Tension Control Systems

Tension Control Systems

WARNER ELECTRIC offers the most complete product line dedicated to the TENSION CONTROL MARKET. The long experience in the market led us to develop high performance controls able to operate in open and closed loop with brakes. WARNER ELECTRIC electromagnetic brakes find an optimum use in tension control when associated with the new digital control line.

ABOUT THIS CATALOGUE

This master catalogue groups all the solutions / products that WARNER ELECTRIC offers. An important part is dedicated to the solution design with particular consideration regarding the machine and the tension control installed. This should help you for the right solution choice taking in consideration the results you want to achieve. All the product characteristics and dimensions are included for every product.

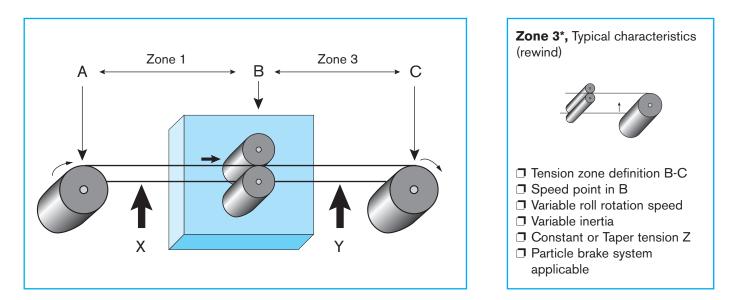
SYSTEM CONFIGURATIONS	4
System configuration 1 System configuration 2 System configuration 3 Open loop solutions Closed loop solutions	4 4 5 6 7
TENSION CONTROL IN OPEN LOOP	8
 I.a - Manual setting by pot. I.b - Manual setting by following arm II - Automatic setting by diameter reading III - Automatic setting by diameter reading with additional functions 	8 - 9 8 - 9 10-11 12-15
TENSION CONTROL IN CLOSED LOOP	16
 Single roll tension control, automatic setting by dancer arm Double roll tension control, automatic setting by dancer arm (modular) Double roll or splicer tension control, automatic setting by dancer arm (compared by the setting by load cells 	16 - 21 22 - 23 act) 24 - 25 26 - 29
BRAKES AND CLUTCHES RANGE	30
Brakes and clutches models	30
ELECTROMAGNETIC BRAKE TYPE TB	32
Tension brake sizing TB brake characteristics Tension brake for strapping machine	31 32 - 35 36 -37
MAGNETIC PARTICLE CLUTCHES AND BRAKES	38
MPB, MPC Series BB, BC Series	38 - 45 46 - 68
MAGNETIC CLUTCHES AND BRAKES	69
MB, MC Series Applications	69 - 75 76
DATA APPLICATION FORM	77
Tension selection Data application form	77 78 - 79

System configurations

Analysing and preparing a project in tension control requires good analysis support. The general block diagrams below are a good representation of any machine generally supporting tension control. We recommend using these diagrams or a part of it in any discussion and correspondence in order to be clear and to avoid possible misunderstandings.

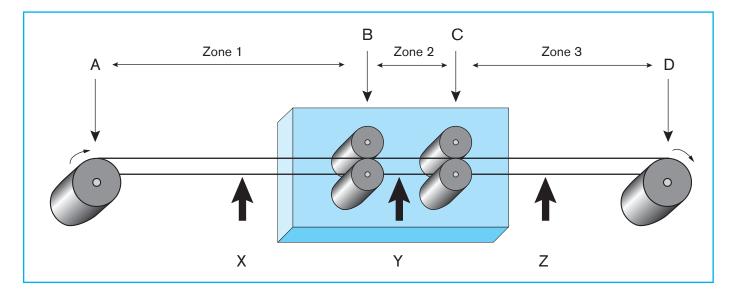
The tension area in an unwinding system is defined by places where we want to control this tension

SYSTEM CONFIGURATION 1


In single roll unwinding, we have one area tension between A and B. One brake can be easy installed in A. The brake control system selected will be according to the accuracy required: open loop or close loop.

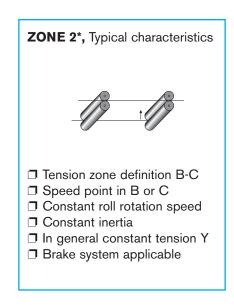
SYSTEM CONFIGURATION 2

Most usual configuration with driving roll, a rewinder and an unwinder.2 separate tension area with tension could be different in X and in Y.Regarding accuracy required we will choice open loop or close loop.


In A, unwinding brake, in B motor for the speed and in C clutch or moto-reducer for rewinding.

SYSTEM CONFIGURATION 3

More complicated machine with intermediary tension area between winder and unwinder. The intermediary area give the line speed. A master-slave system with speed difference in area B/C give required tension.


All tension systems must be according the speed line in close loop.

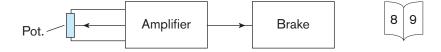
IMPORTANT CONSIDERATION

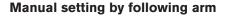
In every machine the speed point location must be clearly identified. In general one of driving nip roll is choose to set the linear speed. The machine speed is considered as **MASTER** function. The tension control, whatever the selected solution, works in **SLAVE** mode. Practically, the operator sets the machine speed with a simple potentiometer and all tension control system existing on the machine have to follow, keeping the required tension at any speed and during all transitory speed phases.

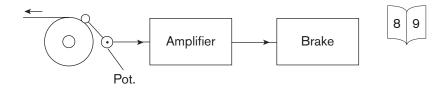
***NOTE :** Each zone is individually controlled. Tension may be different in each zone. It is assumed that there is no slipping on the nip roll.

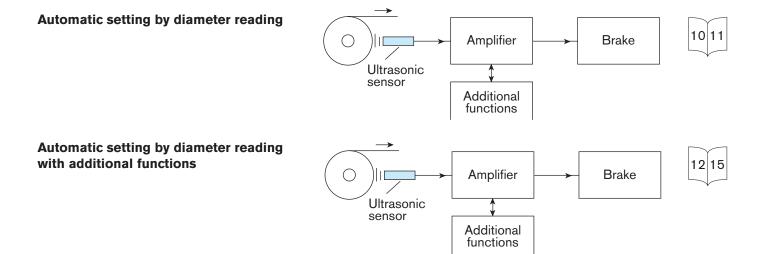
System configurations

OPEN LOOP CONFIGURATION


Working in open loop requires an external reference setting applied to the driver. The torque applied to the unwind roll has to vary according to the diameter of the roll. We don't control acceleration, deceleration and emergency stop as the sensor is blind regarding the band tension.


Application needs one sensor only which drives an amplifier without return information for the influence of correction.



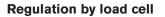

OPEN LOOP SOLUTION

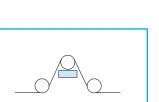
Manual setting by pot.

System configurations

CLOSED LOOP CONFIGURATION

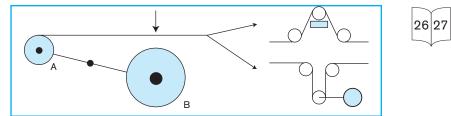

Working in close loop needs one sensor. This one will measure directly or indirectly the band tension. Tension variations detected by sensor are sent to the brake through the control. This action corrects the variation and the new corrected sensor value is sent to the brake and so on.

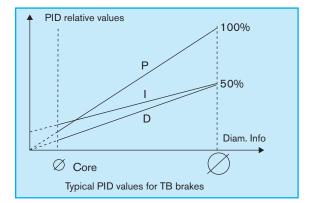

Give a accurate tension regulation during acceleration, deceleration, emergency stop.


Position regulation by dancer arm

This is an electromechanical system and the building quality for the dancer arm must be verified. The band tension is created by the roll weight and/or by pneumatic actuator which have sensible air exhaust.

This is an electromechanical system and the quality of load cells mounting must be checked. The band influences directly the load cells or loads cells. The load cells choice and the mounting are very important regarding overload during starting or emergency stop.



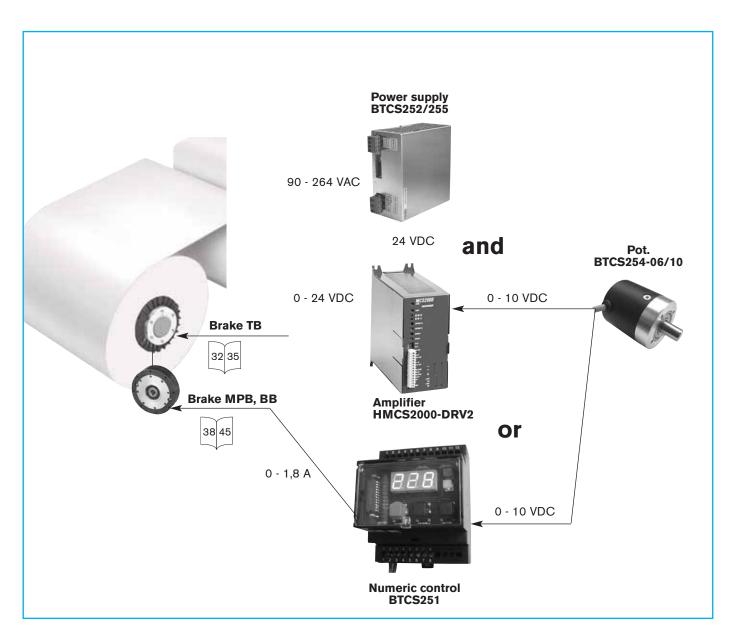

Splicer system regulation

Our control systems are used with double roll unwinders with splicer. The 2 brakes are always controlled, when one is in regulation, the other has holding function through numeric control range HMCS2000. These controls include loop control

with PID, a lot of options and are able to be programmed by PC (via RS232 line) or by external programmer pocket (visual function).

The PID function is optimised for one inertia value. The HMCS2000 line is inclusive of an important feature namely the PID correction. Based on the available diameter information you can apply a continuous PID correction. When no information is available, an internal PID change can be programmed.

Each parameter P, I and D can be set individually for the smallest (core) and biggest diameter. As soon as the correct parameters are found for the extreme diameter value, they are stored. The diameter information provided will fix the PID values for the present diameter value. This will allow the system to keep an excellent stability during the whole diameter evolution. In the case where the diameter information is not available we can provide this signal by installing a sonic sensor or by working with internal correction. The external diameter information supplied to the controller will ensure a better precision compensation compared to an internal correction.


I - Tension control in open loop

Working in open loop requires that a torque setting is defined. The choice depends on the machine complexity and the automation required. One important factor that remains is the tension precision. For unwind and rewind systems the diameter ratio will play an important role. Working in open loop also requires special considerations regarding system inertia.

a Manual setting by pot.

b Manual setting by following arm

Setti	ng type	Where, When, Why ?	Advantage
By Pot.	Diameter reading	 Cable machine No fast accel/deccel Low roll diameter ratio Operator intervention admitted 	 Low cost solution Easy to start-up Automatic regulation by diameter following arm Manual correction feasible

Manual setting by Pot.

Potentiometer BTCS254

With strong housing and axis with bearing, the potentiometer **BTCS254** is suitable for open or closed loop applications.

BTCS254-06	6 mm axis
BTCS254-10	10 mm axis
Potentiometer	10 k Ohm
Shaft material	Stainless steel
	AISI3003
Cover material	Plastic reinforced
	with glass fibre
Body material	Alu UNI 9002/5
Protection	Standard IP54
Operating temperature	0°C / +60°C
Cable length	1,5 m
Weight	150 g
Service manual	MC554

Dimensions (mm)

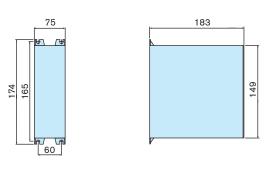
BTCS 252/255 - Single phase power supply / 24 VDC

The Warner Electric switching power supply units of the BTCS252 series are designed and developed for industrial uses where safety, ease of use and reliability are essential. These units comply with the parameters set out by the Low Voltage Directive.

The low working temperature at full power operating temperature combined with the use of first quality components ensure high reliability and duration.

Specifications

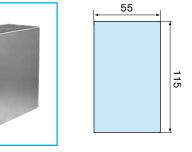
Input	90-264 VAC / 110 VDC, 50/60 Hz
Output	24 VDC, 3 A (BTCS252) and 5 A (BTCS255)
Service manual	MC550


ELECTRICAL AMPLIFIER HMCS2000

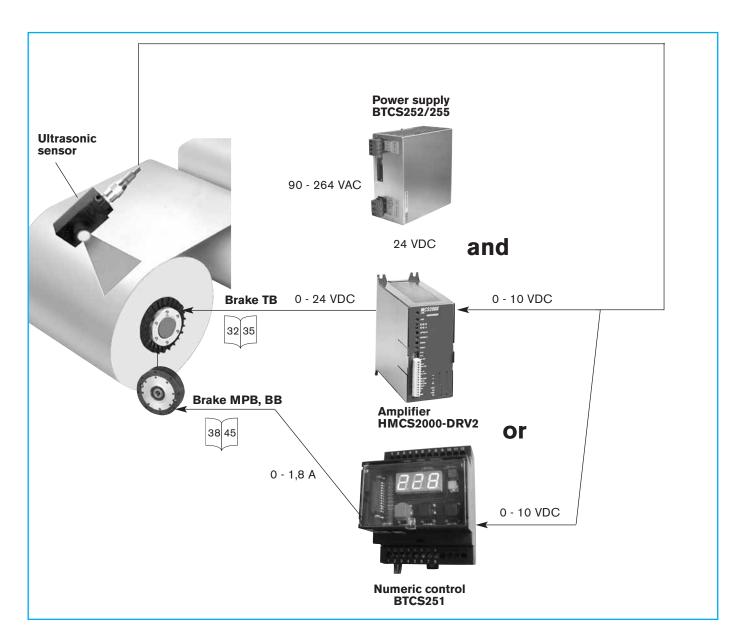
HMCS2000-DRV2

I logic card with 2 individual channels

Model	Electrical	Power supply /	Output voltage /
	input signal	current	current
HMCS2000-DRV2	0 – 10 VDC	24/48 VDC	0-24/48 VDC/4,5 A
Wiring	Shielded cable		
Setting	Anti-residual		
Mounting position	Vibrations free, vertically		
Service manual	MC517		


Dimensions (mm)

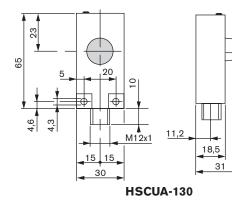
NUMERIC CONTROL BTCS251 (see page 17)

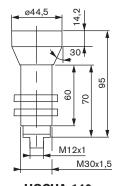

Service manual, mounting with Pot. : SM563

Dimensions (mm)

II - Tension control in open loop

Setting type	Where, When, Why ?	Advantage
Diameter reading	 The most commonly used solution in open loop No operator intervention admitted Large roll ø ratio 	 Physical reading, no reset Easy to start-up




ULTRASONIC SENSORS

Model	HSCUA-130	HSCUA-140
Power supply	15 to 30 VDC / max 30 mA	15 to 30 VDC / max 30 mA
Min. distance	100 mm	400 mm
Max. distance	900 mm	2400 mm
Accuracy	±1 mm	±1 mm
Protection class	IP67	IP67
Accessory	5 m cable	5 m cable
Service manual	MC487	MC488

Dimmensions (mm)

HSCUA-140

BTCS 252/255 - Single phase power supply / 24 VDC

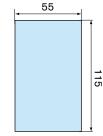
The Warner Electric switching power supply units of the BTCS252 series are designed and developed for industrial uses where safety, ease of use and reliability are essential. These units comply with the parameters set out by the Low Voltage Directive.

The low working temperature at full power operating temperature combined with the use of first quality components ensure high reliability and duration.

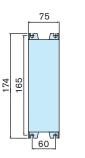
Specifications

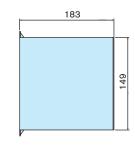
Input	90-264 VAC / 110 VDC, 50/60 Hz
Output	24 VDC, 3 A (BTCS252) and 5 A (BTCS255)
Service manual	MC550

ELECTRICAL AMPLIFIER HMCS2000

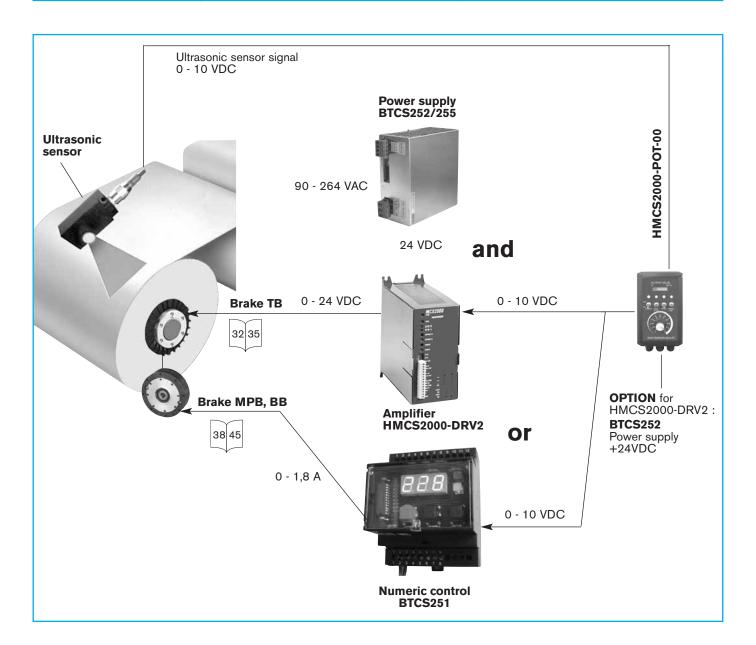

HMCS2000-DRV2

□ 1 logic card with 2 individual channels


Model	Electrical	Power supply /	Output voltage /
	input signal	current	current
HMCS2000-DRV2	0 – 10 VDC	24/48 VDC	0-24/48 VDC/4,5 A
Wiring	Shielded cable		
Setting	Anti-residual		
Mounting position	Vibrations free, vertically		
Service manual	MC517		


Dimensions (mm)

Dimensions (mm)



NUMERIC CONTROL BTCS251 (see page 17)

Service manual, mounting with ultrasonic sensor : SM564

Setting type	Where, When, Why ?	Advantage
Diameter reading	The most commonly used solution in open loop	 Physical reading, no reset Easy to start-up
	 Operator intervention admitted Large roll ø ratio 	 Graphic display for output percentage value Functions control available remote/ manually by operator

Automatic setting by diameter reading

Ultrasonic sensors - Dimensions, see page 11

Model	HSCUA-130	HSCUA-140
Power supply	15 to 30 VDC / max 30 mA	15 to 30 VDC / max 30 mA
Min. distance	100 mm	400 mm
Max. distance	900 mm	2400 mm
Accuracy	±1 mm	±1 mm
Protection class	IP67	IP67
Accessory	5 m cable	5 m cable
Service manual	MC487	MC488

Ultrasonic Diameter Sensing – HMCS2000-POT-00

- □ A simple, analogue, open loop torque control.
- D Power supply 24 VDC / Internal consumption 150 mA.
- □ Adjustable maximum level of the output signal relatively to the ultrasonic input level.
- Graphic display of the output level full screen equal 10 VDC.
- □ FAST STOP, HOLD and BRAKE OFF can be activated either through the front switches or through the terminal bloc.
- **G** FAST STOP and HOLD levels are adjustable via potentiometer.
- □ FAST STOP: a ratio of 1 to 10 times to OPERATING LEVEL
- OPERATING LEVEL: maximum 10 VDC divided by the FAST STOP ratio.
- □ HOLD: output level adjustable between 0 and 10 VDC

To be used ONLY with scalable ultrasonic sensors type HSCUA-130 (0,9 m) or HSCUA-140 (2,5 m)

□ Service manual : MC520

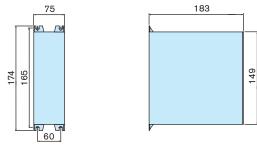
ELECTRICAL AMPLIFIER HMCS2000

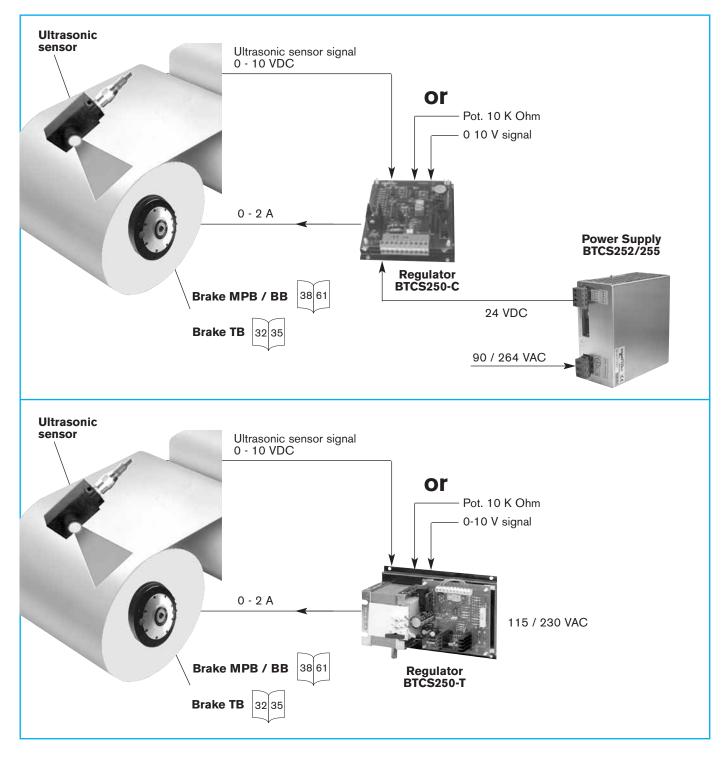
HMCS2000-DRV2

□ 1 logic card with 2 individual output channels

Model	Electrical	Power supply /	Output voltage /
	input signal	current	current
HMCS2000DRV2	0 – 10 VDC	24/48 VDC	0-24/48 VDC/4,5 A
Wiring	Shielded cable		
Setting	Anti-residual		
Mounting position	Vibrations free, vertically		
Service manual	MC517		

POWER SUPPLY BTCS252/255 (see page 15)


NUMERIC CONTROL BTCS251 (see page 17) Service manual, mounting with 0-10 V signal : SM571


Mounting and dimensions (mm)

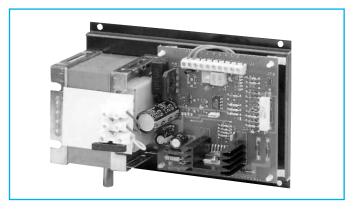
Overall dimensions maximum: Height 160 mm Width 95 mm Depth 75 mm Weight 0,350 kg

Dimensions (mm)

Setting type	Where, When, Why ?	Advantage
Diameter reading	 The most commonly used solution in open loop Operator intervention admitted Large roll ø ratio 	 Physical reading, no reset Easy to start-up Particle brake current controled Cheaper solution

Automatic setting by diameter reading

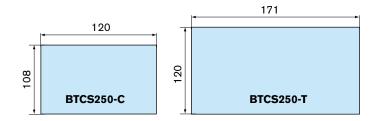
Ultrasonic sensors - Dimensions, see page 11


Model	HSCUA-130	HSCUA-140
Power supply	15 to 30 VDC / max 30 mA	15 to 30 VDC / max 30 mA
Min. distance	100 mm	400 mm
Max. distance	900 mm	2400 mm
Accuracy	±1 mm	±1 mm
Protection class	IP67	IP67
Accessory	5 m cable	5 m cable
Service manual	MC487	MC488

BTCS 250 - Current regulator power supply for particle brakes

The BTCS250 card was designed especially for controling particle brakes and for increasing their yield. In fact, this permits complete elimination of residual magnetism in the powder and therefore it is possible to work in low torque ranges without limits.

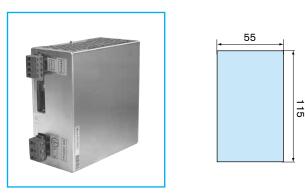
The components used are professional type and this assures absolute reliability over time. Its limited size facilitates wall mounting.


Connection is easy and is done via 10-pole connector fastened to the terminals with screws.

Specifications

Power supply BTCS250-C Power supply BTCS250-T Input Output BTCS250-C BTCS250-T Service manual 28 VAC or 24 VDC 110/230 VAC 50/60 Hz 0-10 VCC from Pot. 10K 0-2 A modulated PWM Only card Card with transformer MC544

Dimensions (mm)

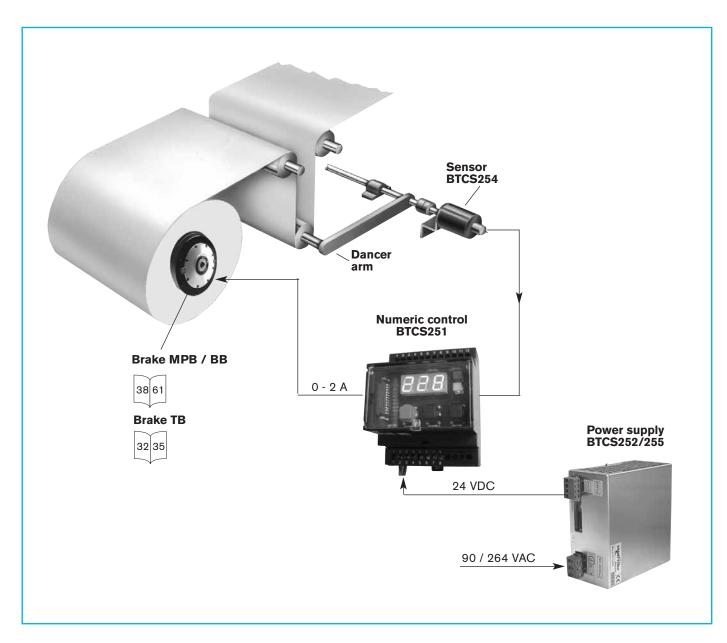


BTCS 252/255 - Single phase power supply / 24 VDC

The Warner Electric switching power supply units of the BTCS252 series are designed and developed for industrial uses where safety, ease of use and reliability are essential. These units comply with the parameters set out by the Low Voltage Directive.

The low working temperature at full power operating temperature combined with the use of first quality components ensure high reliability and duration.

Warner Electric switching power supply units comply with EMI standards. The BTCS252 series with 90 – 264 VAC input has no ignition problems at full load even with low mains voltage and therefore suitable for critical supply mains. This series very compact and has an IP 20 degree of protection against incidental contacts according to IEC 529. All the functions are located on the front panel and marked with IEC symbols.


Specifications

Input 90-264 VAC / 110 VDC, 50/60 Hz Output 24 VDC, 3 A (BTCS252) and 5 A (BTCS255) Service manual MC550

I - Tension control in closed loop

BTCS251 is a digital controller that can be used in both open or closed loop. The brake driver is included and supply current regulation especially for powder brakes. One 3 digit display permit to follow signal variations.

Setting type	Where, When, Why ?	Advantage
Dancer arm	 Unwinders Printing machines Intermittent or continuous function Adapted to powder brakes 	 Output PWM included Digital inputs Numeric with micro-processor Accel / decel machine with separated PID Can drive motor or pneumatic brake

BTCS251 - Numeric control

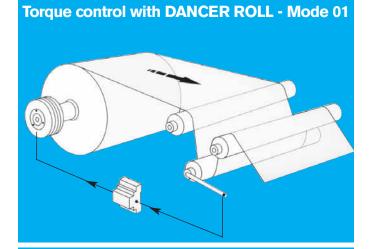
This device integrates a microprocessor control function and the power output to control the electromagnetic powder brakes.

Equipped with only 3 push buttons for calibration and programming and one display with a 3 digit reading, it has been designed to be mounted on a DIN rail inside customers electrical control panel.

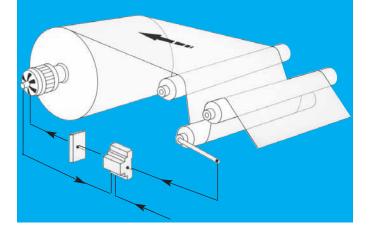
The compact size, simple installation and easy to use make the instrument extremely flexible.

The 24 VDC digital inputs can be easily interfaced with the instrumentation running the machine logic (PLC). The type of input and output electrical signals can be chosen via a keyboard by the system designer and the P.I.D. control logic results in high performance precision control.

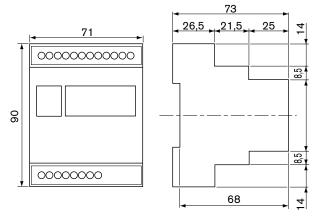
The unit has been designed specifically for machines utilising a dancer roll and magnetic particle brake however it can also be used with pneumatic brakes or motors, on unwind or rewind applications and with amplified load cells.

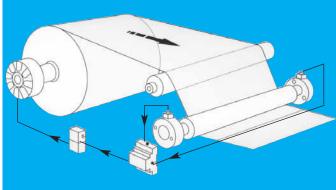

Spécifications

Supply Power with particle brake: Power with pneumatic brake or motor: Regulated analog output


Analog output PWM output Analog input keyboard selectio Digital input Working temp. Weight Standard approval Mounting Service manual 24 VDC / 18 VCA 50 W max.

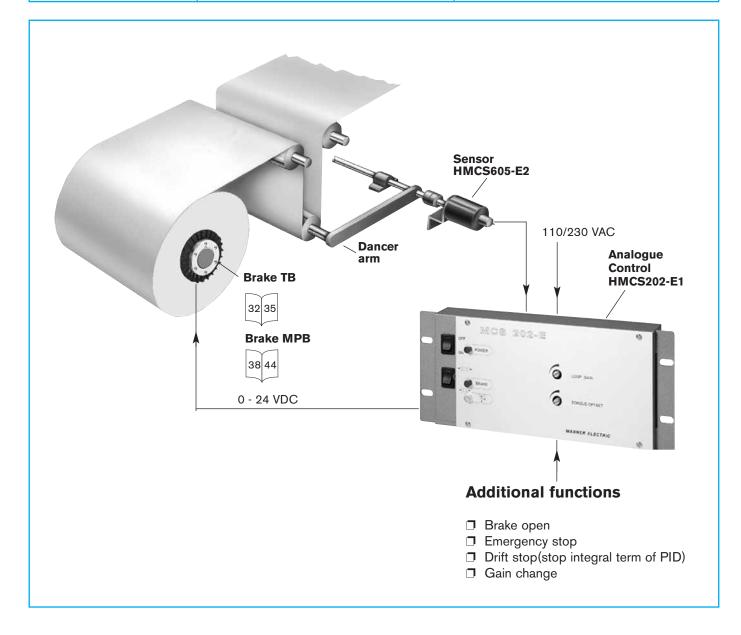
atic brake	6 W max.
putput	0-10V/-5+5V/4-20 mA selectable via keyboard 0-10V
	24VDC, 1,8 A max
ard selection	0-5V/0-10V/0-20 mA
	24 VDC
	0-50 °C
	180 g
	CE/UL
	Rail DIN
	MC553


Applications


Speed control with DANCER ROLL - Mode 02

Dimensions

Torque control wit LOAD CELLS - Mode 00



I - Simple tension control in closed loop

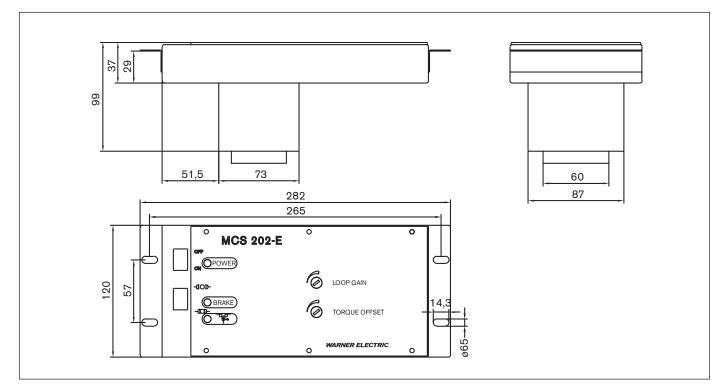
If your machine requires a very accurate web tension control, then you need to work in closed loop. An important unit in the loop is the sensor. Several possibilities are offered. The choice now depends on the kind of machine you are building, the mechanical construction and the max tension value you desire to control.

Setting type	Where, When, Why ?	Advantage
Dancer arm	 Printing machines Intermittent function Flying splice need 	 Absorb tension peak Can act as store Easy flying splice Accel / decel machine phase well absorbed Flexibility

ROTARY SENSOR HMCS605-E2 (see pages 20 and 21)

ANALOGUE CONTROL HMCS202-E1

□ HMCS202-E1	Standard execution
□ HMCS202-E54	Standard IP54 protected
□ HMCS202-EC1	Open frame execution

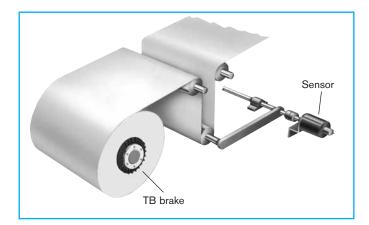

Technical characteristics – valid for 3 executions

	Range - Values	Comments
Power supply	110-220 VAC selectable	Open front face to access
Output current capability	Max 2, 5 Amps, short circuit protected	Able to power 2 TB in parallel
User settings	Loop gain	Front face potentiometer
	Offset torque	Front face potentiometer
Output voltage brakes	0-24 VDC	Compatible all elec. Warner Electric
Housing	Metal rugged housing	Only HMCS202-E1 and -E54
Loop gain	2 adjustable range selection	Can be change during operation
Accessories	HMCS-KIT1, 2, 3, 5 and 6	See details on page 21
Sensor compatible	Dancer arm with HMCS605-E2	See details on pages 20 and 21
Service manual	MC403	

Technical information

HMCS202 control is based on classical and fixed PID terms. The loop gain can be set on front face potentiometer. Due to the fixed PID terms, its use is limited in terms of roll diameter ratio. One input is provided to change the loop gain and has to be used when diameter ratio exceeds 8. To ensure proper operation it is important to wire the function "Drift Stop". This function releases the Integral term as soon as the machine runs.

Dimensions (mm)



ROTARY SENSOR HMCS605-E2

A position sensor is used in 2 possible ways:

□ To detect dancer moving in the closed loop installation working on dancer principle.


□ To sense the diameter of the roll to operate open loop control or make PID compensation in closed loop installation.

HMCS605-E2 is ideal for easy mounting. It is encapsulated in rugged metal housing preventing mechanical shocks. Furthermore it is provided with built in switch in order to change the signal output polarity.

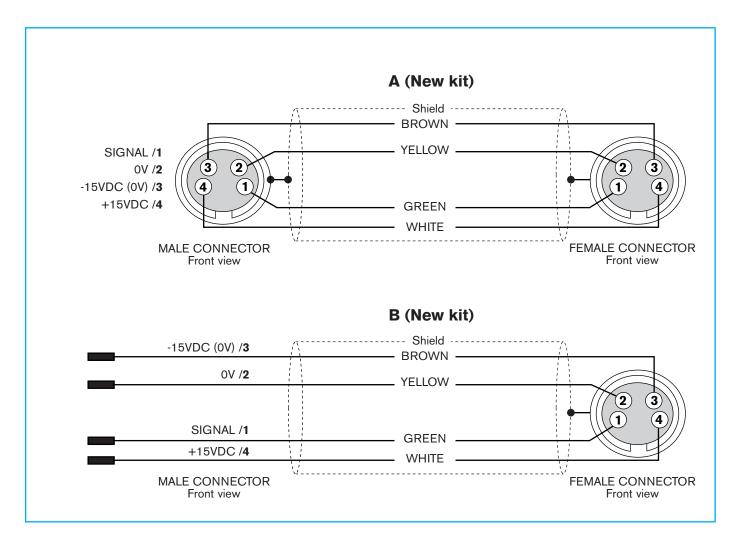
	HMCS605-E2
Power supply	10 to 30 VDC / 30 mA
	(or ± 5 to 15 VDC)
Max. detection angle	200° or ± 100°
Sensitivity	2,5 mV / V / °
Service manual	MC483

Dimensions (mm) – Mounting

HMCS605-E2 - MOUNTING KIT

The HMCS202-Exx is designed to work with dancer arm principle. Usually the sensor is a rotary type.

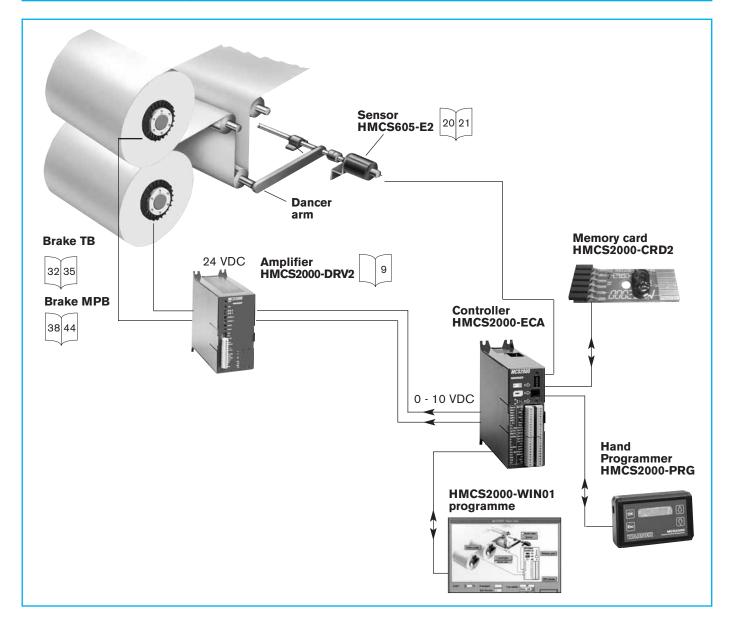
Warner Electric sensor HMCS605-E2 are delivered without mounting kit.


Mounting kit comprises of **CABLE WITH CONNECTOR(S)**, **COUPLING**, **MOUNTING BRACKETS** and all necessary **SCREWS**. Various KITS have various lengths of cable and cable with or without connector at control end side.

HMCS2000 line requires free leads (HMCS2000 control line is provided with terminal block).

HMCS202-Exx requires a connector (HMCS202-Exx is provided with the connector).

Old kit 3 wires	New kit 4 wires	Cable length	1 or 2	Compatibility	Wiring
			connectors		
HMCS-KIT1	HMCS-KIT1A	3 m	2	HMCS202-E1	А
HMCS-KIT2	HMCS-KIT2A	3 m	1	HMCS2000-ECA/CTDA	В
HMCS-KIT3	HMCS-KIT3A	4,5 m	2	HMCS202-E1	А
HMCS-KIT4	HMCS-KIT4A	4,5 m	1	HMCS2000-ECA/CTDA	В
HMCS-KIT7	HMCS-KIT7A	6 m	2	HMCS202-E1	А
HMCS-KIT8	HMCS-KIT8A	8 m	1	HMCS2000-ECA/CTDA	В


ELECTRICAL CONNECTIONS

II - Double tension control in closed loop (modular)

HMCS2000-ECA is a digital controller that can be used in both open or closed loop. Operation in open and closed loop is also possible. It is mainly destined for OEM application. The programming tool is detachable. Sensor, sensor mounting kit, display are available as options. The unit has to be powered with 24 VDC.

Setting type Where, When, Why ?	Advantage
Dancer arm	 Absorb tension peak Can act as store Easy flying splice Accel / decel machine phase well absorbed Flexibility

Automatic setting by dancer arm

POWER SUPPLY BTCS252/255 and HMCS2000-DRV2 (see page 9)

ROTARY SENSOR HMCS605-E2 (see pages 20 and 21)

CONTROLLER HMCS2000-ECA

Digital controller - 2 channels

Main Characteristics

- □ 24 VDC power supply unit
- □ PID parameters setting on line
- □ Automatic adaptation for PID parameters, splicing logic included
- **Opto isolation for input and output**
- □ Compatible PLC
- □ Automatic sensor scaling and output sensor information
- D Programming easy by pocket keyboard or PC(Windows)
- □ Available in open loop as calculator
- □ 2 analogic input, 2 output channels
- Plugable memory card
- □ Three language available
- Most dedicated for unwinding and rewinding with electromagnetic brakes and clutches.
- □ Service manual : MC514

BTCS232FM - RS232 SERIAL CABLE

The **BTCS232FM** cable is specially adapted to connect MCS2000 range controls to PC.

□ Service manual : SM374

HMCS2000-PRG - HAND PROGRAMMER

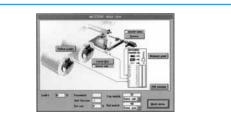
- □ 4 command keys only
- □ 2 x 16 characters display
- ☐ Menu in 3 languages
- □ Connectable and disconnectable during operation
- □ Supply by control HMCS 2000-EC

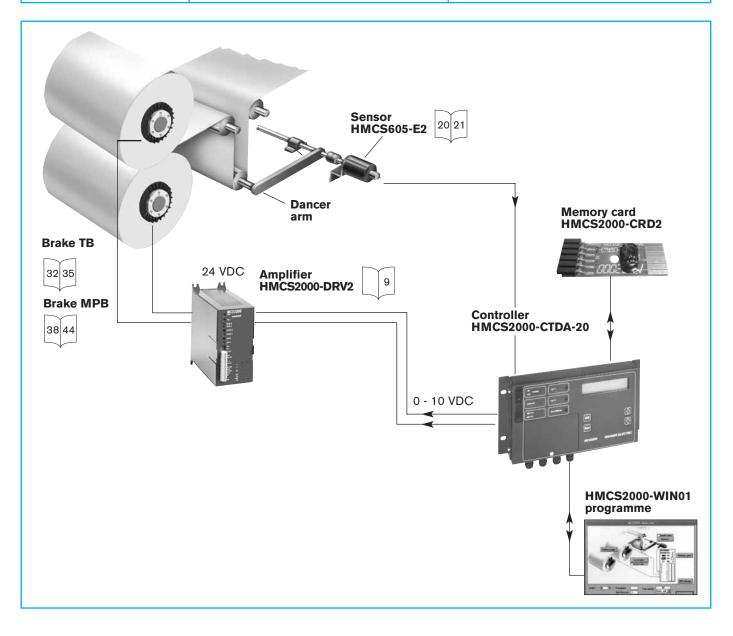
HMCS2000-CRD2 - MEMORY CARD

All setting data saved. It allows a quick loading operation on new machine or on running machine to optimise.

- Memory for 2 different programs
- D Plugable on line in HMCS2000-ECA unit

HMCS2000-WIN01 - PROGRAMME


The program can modify the running setting by this software running with: Windows 95/98/XP/2000.



III - Double tension control in closed loop (compact)

The command unit **HMCS2000-CTDA** is a complete solution with power supply and programmer display integrated. There are 2 software version available. See technical data below

Setting type	Where, When, Why ?	Advantage
Dancer arm	 Printing machines Intermittent function Flying splice need 	 Absorb tension peak Can act as store Easy flying splice Accel / decel machine phase well absorbed Flexibility

Automatic setting by dancer arm

POWER SUPPLY BTCS252/255 and HMCS2000-DRV2 (see page 9)

ROTARY SENSOR HMCS605-E2 (see pages 20 and 21)

BTCS232FM - RS232 SERIAL CABLE (see page 23)

CONTROLLER HMCS2000-CTDA20

Main features

- **Three mounting possibilities**
- □ Software password protected
- Scrolling menu program
- Multipurpose application
- □ RS232 communication
- Two ouput channels
- □ Automatic sensor scaling
- □ Programmable output configuration
- **Output** sensor information
- **I** External set point change
- □ Automatic or imposed PID correction
- □ All features requested for tension control
- □ Plugable memory card
- Variable tension value to prevent telescopic effect on unwinding – CTDA-22
- □ Service manual : MC525

HMCS2000-CRD2 - MEMORY CARD

All setting data saved. It allows a quick loading operation on new machine or on running machine to optimise.

- Memory for 2 different programs
- D Plugable on line in HMCS2000-ECA unit

HMCS2000-WIN01 - PROGRAMME

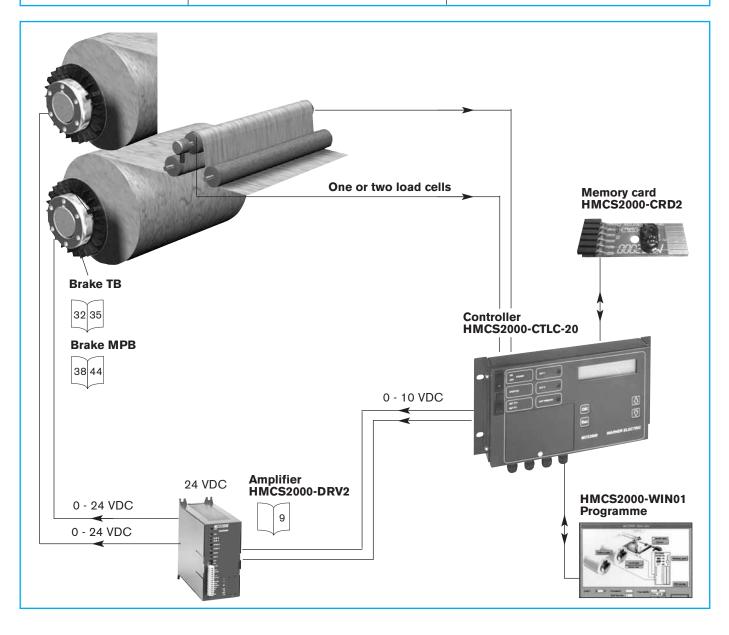
The program can modify the running setting by this software running with: Windows 95/98/XP/2000.

Specifications

Input power supply	110-240 VAC selectable
Analogue inputs Two analogue inputs	0-10 VDC
Analogue outputs Two controlled channels Open loop signal	± 10 VDC, 0-20 mA 0-10 VDC
Digital inputs Set point change + Set point change – Set point change ±	active low active low front face switch
Gain multiplier Output limitation ABC binary combination ABC inputs synchronisation Stop integral form	active low active low active low active low
Digital outputs Sensor level indication	Two binary outputs

Other outputs Power supply sensor

Power supply Voltage reference ± 15 VDC / 100 mA ± 5 VDC / 100 mA 24 VDC + 10 VDC / 10 mA



IV - Double tension control in closed loop

The command unit **HMCS2000-CTLC** is a complete solution with power supply and programmer display integrated. There are 2 software version available. See technical data below

Setting type	Where, When, Why ?	Advantage
Load cell	 Slitter, Sheeter and Coater For heavy material Limited room 	 Direct tension measure Mechanically well integrated No moving part
	 No fast accel/decel Tension peak accepted 	

POWER SUPPLY BTCS252/255 and HMCS2000-DRV2 (see page 9)

BTCS232FM - RS232 SERIAL CABLE (see page 23)

CONTROLLER HMCS-2000-CTLC-20

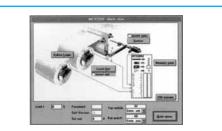
Main features

- □ Three mounting possibilities
- □ Software password protected
- Scrolling menu program
- □ Multipurpose application
- □ RS232 communication
- □ Two ouput channels
- □ Automatic sensor scaling
- □ Programmable output configuration
- Output sensor information
- External set point change
- □ Automatic or imposed PID correction
- □ All features requested for tension control
- Plugable memory card
- Variable tension value to prevent telescopic effect on unwinding – CTLC-22
- □ Service manual : MC516

HMCS2000-CRD2 - MEMORY CARD

All setting data saved. It allows a quick loading operation on new machine or on running machine to optimise.

- □ Memory for 2 different programs
- D Plugable on line in HMCS2000-ECA unit


HMCS2000-WIN01 - PROGRAMME

The program can modify the running setting by this software running with: Windows 95/98/XP/2000.

Specifications

Analogue inputs 0-10 VDC Analogue outputs ± 10 VDC, 0-20 mA Two controlled channels ± 10 VDC, 0-20 mA Open loop signal 0-10 VDC Digital inputs set point change + Set point change - active low Set point change ± front face switch
Two controlled channels± 10 VDC, 0-20 mAOpen loop signal0-10 VDCDigital inputsSet point change +active lowSet point change -active low
Set point change +active lowSet point change -active low
Gain multiplieractive lowOutput limitationactive lowABC binary combinationactive lowABC inputs synchronisationactive lowStop integral formactive low
Digital outputs Sensor level indication Two binary outputs
Other outputs Power supply sensor ± 15 VDC / 100 mA ± 5 VDC / 100 mA
Power supply24 VDCVoltage reference+ 10 VDC / 10 mA

Load cells

The **FOOT MOUNTED LOAD CELL** is the ideal solution to retrofit machines or for heavy tension measurement. The foot mounted model has to be installed with a pillow block type ball bearing supporting the sensing shaft. **HFM01A...** and **HFM02-...** are only differenciated by the physical dimensions.

FOOT MOUNTED TYPE FM01A... and FM02-...

Foot mounted load cells are available in two versions:

With incorporated amplifier : HFMAC	Without amplifier :	HFMC
AC = amplifier and connector on the load cell body	C = connector on load cell boo	dy

Specifications (all HFM series)

	HFMAC	HFMC		
Power supply	±12 to ±15 VDC	± 5 VCC or +10 VDC		
Sensitivity	0-5 VDC, nominal load	10 mV, nominal load		
Rating	100 - 250 - 500 - 1000	– 2500 – 5000 – 10000 N		
Connections	Cable s	supplied		
Permitted overload				
- Compression	on 150 %			
- Extension	120)%		
Radial permitted force	50	%		
Dimensions	See mounting instr	uctions ref. MC480		
Mounting	See recommendations on page 29			
Service manual	MC480			

AVAILABLE MODELS / CAPACITY

Nom. load	100 N	250 N	500 N	1000 N	2500 N	5000 N	10000 N
HFM01A-	-100-AC	-250-AC	-500-AC	-1000-AC	-2500-AC	-5000-AC	
HFM01A-	-100-C	-250-C	-500-C	-1000-C	-2500-C	-5000-C	
HFM02						-5000-AC	-10000-AC
HFM02						-5000-C	-10000-C

HMCS2000-IS - Load Cell Interface

The interface sensor will sum and amplify the input signals from two load cells, and can be used with a number of different load cells. The interface should be positioned close to the load cells to ensure that no noise is injected into the low voltage signal before it is amplified.

Specifications

Input power / Output power Input supply: **Analog inputs** 2 load cell input:

Ultrasonic input:

3 inputs for line speed:

+24 VDC, ±10%, 300 mA

any voltage between 20 mV and 10 VDC 5 K Ω input impedance 0-10 VDC, delta mon. of 1 V 10 K Ω input impedance max. gain: 1000 0-10 VDC, 10 K Ω impedance

Analog outputs (short circuit protected)

Calibrated load cell/ ultrasonic-sensor output: Power for ultrasonic sensor: Voltage reference: Service manual

0-10 VDC, 10 mA max. +24 VDC 10 VDC, 10 mA MC521

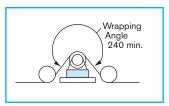
Load cells

END SHAFT LOAD CELLS are normally used in new machines designed with the possibility to place the load cell directly on the sensing roll. The end shaft version offers the advantage of being able to easily place the load cell in any tension resultant direction. The **HES** model exists in two versions differenciated with the diameter of ball bearing which has to be placed in.

All end shaft load cells are based on the Wheatstone bridge principle. They have no built in amplifier. They are delivering a signal which is proportionnal to the voltage supply and tension applied. It is important to respect the measurement direction referenced on the load cell body (normally an arrow indicates the sensitive direction).

HES..-... LOAD CELL FEATURES

	HES01-40C and HES02-52C	
Power supply	10 to 15 VDC / 40 mA (±5 VDC in Warner Electric control)	
Sensitivity	2 mV / V supply at nominal load	
	1 mV / V supply for 50 and 150 N models	
Rating	50-150-250-500-1000-2000 N	
Connections	5 m shielded cable supplied	
Mechanical overload	Max 150 % in any direction	
Dimensions	See mounting instructions ref. MC481 and MC482	
Mounting See recommendations below		
Service manual	ce manual MC481 and MC482	



AVAILABLE MODELS / CAPACITY

Nominal load	150 N	250 N	500 N	1000 N	2000 N
HES01	-150-40C	-250-40C	-500-40C	-1000-40C	-2000-40C
HES02	-	-250-52C	-500-52C	-1000-52C	-2000-52C

LOAD CELLS SIZING - MOUNTING RECOMMENDATIONS

Please keep this principle in mind: the load cell installed is destined to measure the WEB TENSION and not other constraints applied to it.

Take the following points into consideration before selecting, sizing and installing material components.

- Load cells location should be vibration free. Vibrations will decrease quality measurement.
- The sensing shaft fitted on or in has to be very well balanced. Unbalanced shaft will create measurement oscillation, causing variations in control quality.
- □ Adapted ball bearing have to be used to avoid original stress on load cell (self-aligning ball bearing).
- □ Respect a reasonable sensing shaft weight/web tension measure ratio. Less than 1.
- Do not oversize the load cell respect to your calculation. Max admitted factor 3, recommended 1,5.
- □ Respect a minimum wrapping angle on load cell. **Min = 180°.**
- □ So far as it is possible, use load cell in compression, with web tension effect in same direction as the weight of shaft.

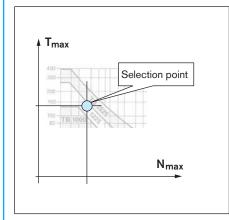
Tension brakes and clutches range

Brake and clutch types	Series	Main characteristics	Torque range	Pages
Electromagnetic brakes	тв	Monodisc 24 VDC power supply	0,5 - 300 Nm	2835
Electromagnetic brakes	твм	Monodisc 24 VDC power supply	10 Nm	36 37
Magnetic particle brakes	MPB BB	Completely packaged and enclosed unit Shaft output or bore 24 or 90 VDC power supply	0,04 - 500 Nm	3868
Magnetic particle clutches	MPC BC	Completely packaged and enclosed unit Both end shaft output or bore 24 or 90 VDC power supply	0,04 - 500 Nm	3868
Permanent magnetic brakes	МВ	Completely packaged and enclosed unit Shaft output Manual setting	0 - 33 Nm	6975
Permanent magnetic clutches	МС	Completely packaged and enclosed unit Bore output Manual setting	0,07 Ncm - 33 Nm	6975

Tension brake sizing

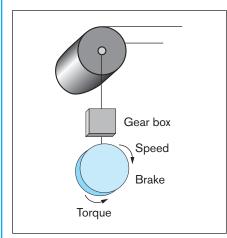
Two important parameters are used in brake selecting:
□ Max. torque requirement
□ Max. thermal power to be dissipated

These two values are determined by the application (see calculation example on pages 78-79).


ELECTROMAGNETIC BRAKE TYPE TB - SELECTION

TB brake selection is based on two values :

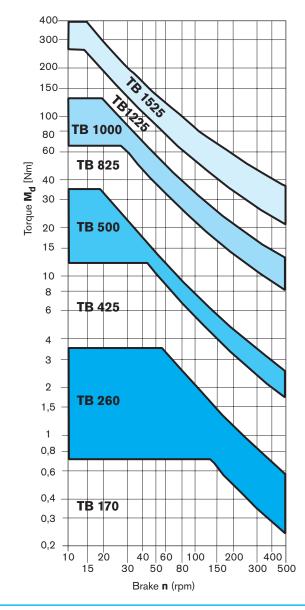
Max torque need (Nm) on the brake


*Max brake rotation speed for the max torque (rpm)

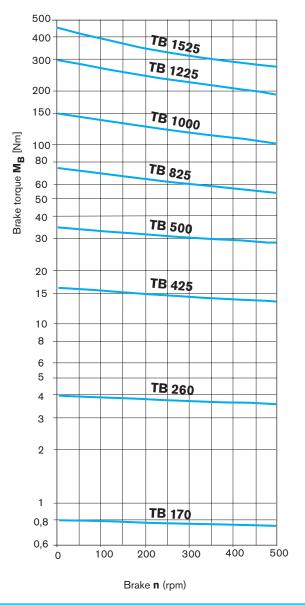
* As the curve given for TB selection takes the power dissipation into account, this value is used.

 $T_{max} = torque$ needed at the brake for the max tension in material and the max roll diameter - taking any gear ratios into account.

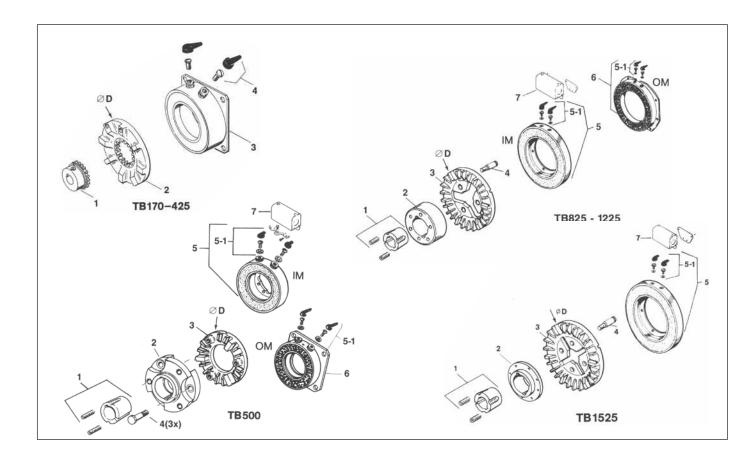
N_{max} = brake rotation **speed** for the max linear speed and the max roll diameter – taking any gear ratios into account.


Note : the constant tension in the web gives a constant power on the brake. However, we make the selection for the max torque (then at full roll diameter) because it's the moment where the brake has the least natural cooling.

TB brake selection


The table (pictured below left) illustrates the selection of the correct **TB brake**. The table on the right determines the maximum torque provided by the brake when nominal voltage is applied. After selection you can consult the complete brake characteristics and dimensions on pages 34 to 35.

Dynamic braking torque TB170 - TB1525



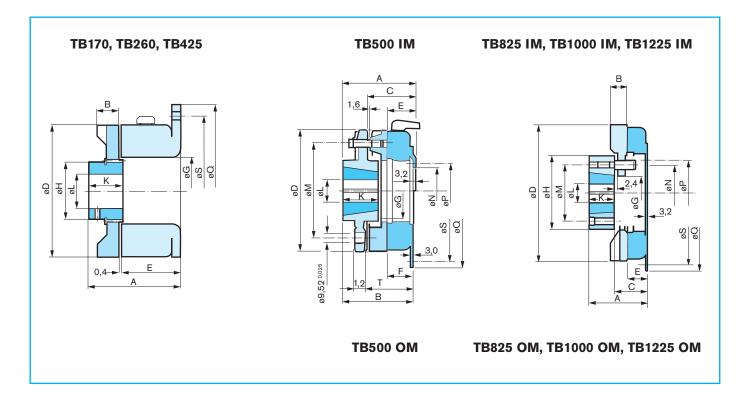
Maximum braking torque (emergency stop) TB170 - TB1525

TB brake characteristics

TB units are assembled using various parts described below. Main components of the brake are armature and magnet. Additional parts are offered to provide for ease of mounting.

		Part	TB170	TB260	TB425
Г			D = 46 mm	D = 69 mm	D = 111 mm
-	1	Armature hub*	B5102-541-001-38	B5103-541-001-47	B5104-541-001-31
1	2	Armature	K110-0096	B110-0097	B110-0098
		Magnet 24V	K5375-631-012	K5365-631-016	K5367-631-008
3	3		R = 110 Ω, 20°C	R = 60 Ω, 20°C	R = 76 Ω, 20°C
4	4	Terminals	Wires	B5103-101-002	B5103-101-002

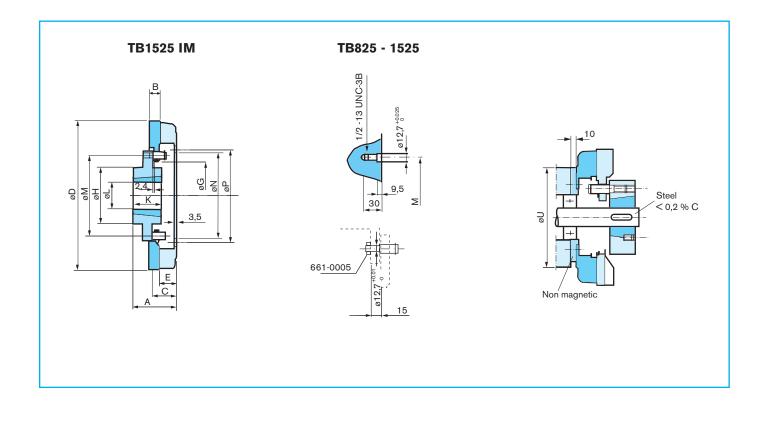
	Part	TB500
		D = 130 mm
1	Taperlock bushing**	B180-xxxx-xxxx
2	Armature hub	K5300-541-004
3	Armature	B110-0047
4	Drive pins	K5300-101-003 3 x
5	Magnet IM 24V	B5300-631-040
5-1	Terminals	B5311-101-001
6	Magnet OM 24V	B5300-631-000-46
7	Conduit box	K5200-101-010


* Prebored

** Indicate bore and keyway

	Part	TB825	TB1000	TB1225	TB1525	
		D = 215 mm	D = 259 mm	D = 316 mm	D = 395 mm	
1	Taperlock bushing**	B180-xxxx-xxxx	B180-xxxx-xxxx	B180-xxxx-xxxx	B180-xxxx-xxxx	
2	Armature hub	B540-0394	B540-0313	B540-0015	B540-0314	
3	Armature	B5301-111-019	B5302-111-021	B5303-111-011	B5304-111-005-04	
4	Drive pins	B5301-101-001	B5301-101-001	B5301-101-001	B5301-101-001	
4		3 x	3 x	4 x	4 x	
4	Magnet IM 24V	B5311-631-000-30	B5312-631-000-36	B5313-631-000-11	B5314-631-000-08	
4		R = 20 Ω, 20°C	R = 20 Ω, 20°C	R = 22 Ω, 20°C	R = 20 Ω, 20°C	
5-1	Terminals	B5311-101-001	B5311-101-001	B5311-101-001	B5311-101-001	
6	Magnet OM 24V	B5311-631-000-16	-	-	-	
7	Conduit box	K5200-101-011	K5200-101-011	K5200-101-011	K5200-101-011	

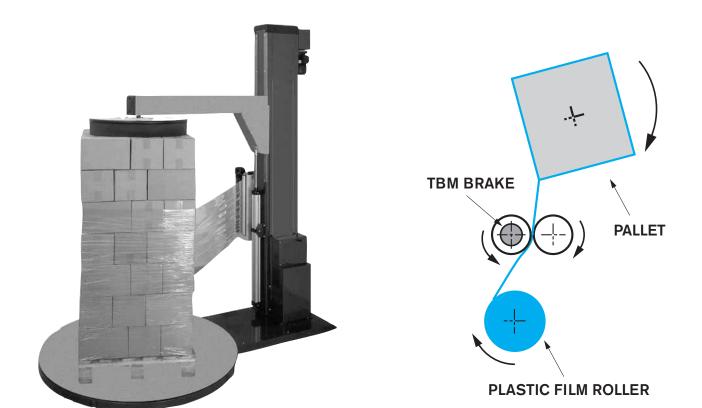
TB brake characteristics

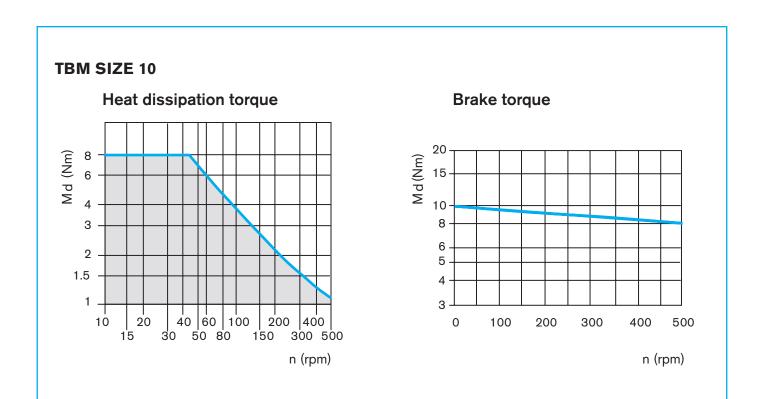

All **TB brakes** are rated at 24 VDC nominal. When selection is correct the voltage on the brake should be approximately 12 VDC for your maximum parameters used in calculation. All **TB brakes** are able to work for short periods of time (less than 10 seconds) in the 12-24 VDC range, for example in machine deceleration or in emergency stop.

Technical data and dimensions

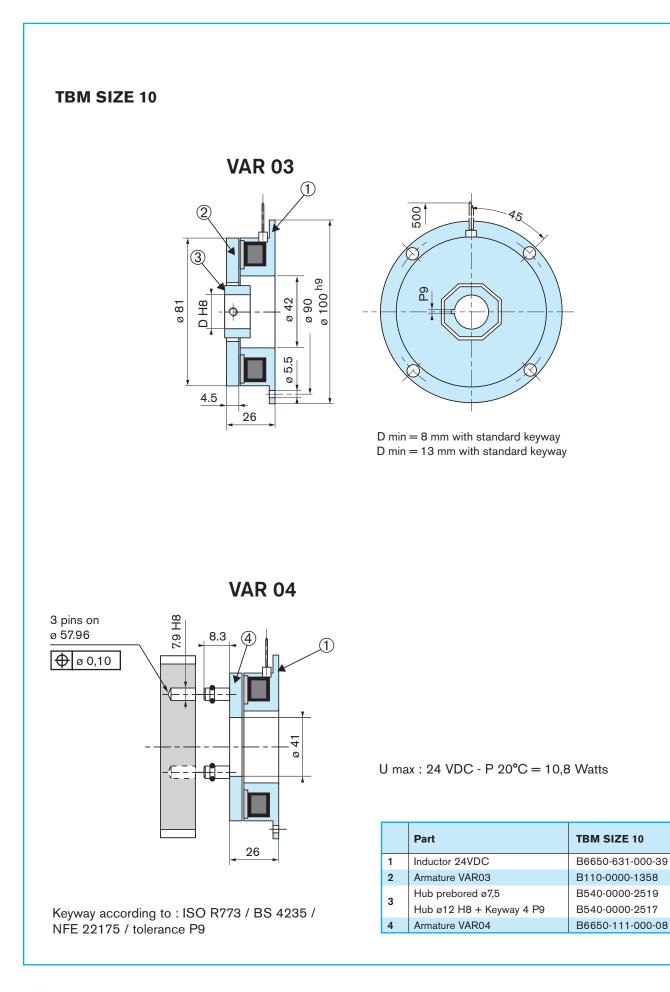
Size		TB170	TB260	TB425	TB500	TB825	TB1000	TB1225	TB1525
M _d	[Nm]	0,8	4	16,5	35	75	150	300	450
M _d min	[Nm]	0	0,08	0,16	0,2	0,5	1,1	2	3
n max	[rpm]	5000	5000	5000	5000	3000	2400	2000	1600
I 24V =	[A]	0,22	0,40	0,32	1,010	1,177	1,224	1,076	1,212
P Continu	[kW]	0,015	0,030	0,060	0,100	0,200	0,360	0,520	0,810
P* Alternativ	[kW]	0,022	0,045	0,100	0,180	0,360	0,650	0,950	1,580
R 20° C	[Ω]	110	60	76	23,8	20,4	19,6	22,3	19,8
t _b	[s]	0,020	0,040	0,080	0,052	0,112	0,152	0,290	0,310
Inertia	[kgm²]	12 • 10 ⁻⁶	116 • 10 ⁻⁶	1,4 • 10 ⁻	1,9 • 10 ⁻	0,022	0,041	0,095	0,213
Mass	[kg]	0,180	0,650	1,800	2,3	8,2	12	21	27,5
А	[mm]	30,5	48,5	52	79	94	105	138	116
В	[mm]	7	12	14	77	30,5	30,5	30,5	30,5
С	[mm]	-	-	-	51	54	56,5	62	65
øD	[mm]	46	69	111	130	215	259	316	395
Е	[mm]	20,6	32	30,5	30,5	33,5	36,5	41,5	44,5

* Alternativ duty based on 30 minutes ON and 30 minutes OFF.




Size		TB170	TB260	TB425	TB500	TB825	TB1000	TB1225	TB1525
F	[mm]	-	-	-	28,5	-	-	-	-
øG	[mm]	19,5 ^{+0,05}	35	62	49	55	98	114	180
øН	[mm]	15,9	30,1	31,8	-	118	159	175	152,5
K*	[mm]	10,3	17,5	22,2	38	38	44,5	76	76
øL max	[mm]	10	20	22	32	42	60	75	75
øM ^{±0,025}	[mm]	-	-	-	98,42 3 x 120°	90,49 3 x 120°	133,4 3 x 120°	149,3 4 x 90°	215,9 4 x 90°
øN ^{±0,05}	[mm]	-	-	-	52,40	88,93	136,55	161,95	228,60
øP (for screw)	[mm]	-	-	-	60,3 8 x M4	108 6 x M8	155,6 6 x M8	184,1 6 x M8	247,60 12 x M8
øQ _{-0,05}	[mm]	61,9	88,9	142,47	165,10	247,62	-	-	-
øS (for screw)	[mm]	54 4 x M4	79,4 4 x M4	127 4 x M6	149,2 4 x M10	225,5 4 x M8	-	-	-
Т	[mm]	-	-	-	49	-	-	-	-
øU	[mm]	-	-	-	110	170	220	260	340

* Reverse mounting of taperlock bushing is possible


Tension brake for strapping machine

Specially designed for strapping machine, the **electromagnetic brake TBM10** is adjustable for the different kind of plastic film. Mounted on the intermediate roller, it will tighten the plastic film and will permit a perfect strapping.

Tension brake for strapping machine

Accurate torque control with instantaneous engagement!

Warner Electric Precision Tork[™] magnetic particle clutches and brakes are unique because of the wide operating torque range available. Torque to current is almost linear and can be controlled very accurately.

The unique features of the magnetic particle clutches and brakes make them ideal for :

- tension control
- Ioad simulation
- Cycling/indexing
- \square soft starts and stops

Specials are our business

Special Shaft Configurations

Customer specified shaft configurations for easy machine mounting and retrofitting.

Wash Down Environment

Stainless steel units available for extreme environments.

Special Torque

Maximum torque configurations to meet customer specifications.

Features and Benefits

Torque independent of slip speed

Torque is transmitted through magnetic particle chains which are formed by an electromagnetic field. The torque is independent of slip speed, depending only on circuit current, and is infinitely variable from 0 (disengaged) to rated torque.

Precise engagement

Precision Tork magnetic particle clutches and brakes engage to transmit torque with speed and precision. Response of the particles to the field is virtually instantaneous, providing perfectly controlled, jerk-free engagement.

Customer specified engagement

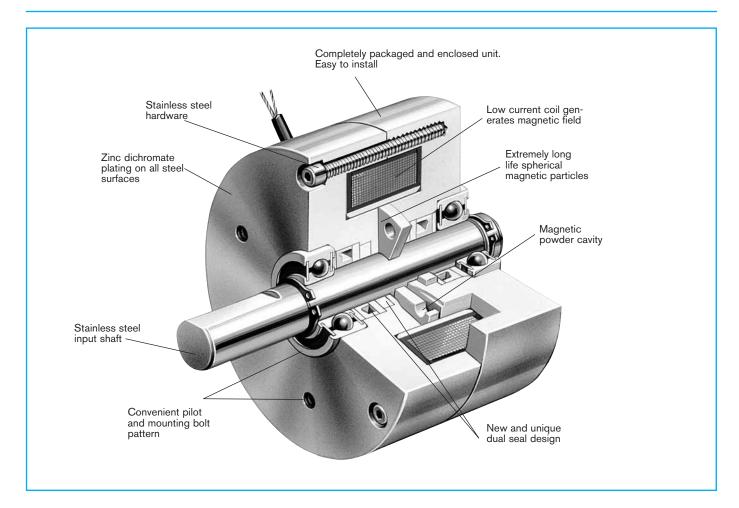
Engagement time may be very gradual or extremely fast. The frequency and torque of the engagement/disengagement sequence is limited only by the capabilities of the control circuitry.

No wearing parts

There are no friction surfaces to grab or wear, and the units are not affected by changes in atmospheric or other environmental conditions.

Efficient/Compact design

□ High torque to size ratio and low consumption of electric power.


Versatile mounting

- Convenient bolt circle for easy mounting.
- Mounting brackets available for all sizes.
- Brakes are available with solid shafts and through bore.
- Can be mounted horizontally or vertically to solve virtually any motion control requirement.

Modular

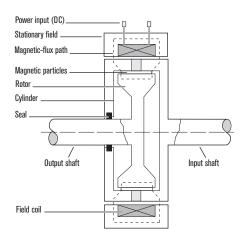
- **D** Customised products
- Interchangeable with industry standard sizes

Design and operation

Operating Principles

The magnetic particle unit consists of four main components:

- 1) Housing
- 2) Shaft/disc
- 3) Coil
- 4) Magnetic powder


The coil is assembled inside the housing. The shaft/disc fits inside the housing/coil assembly with an air gap between the two; the air gap is filled with fine magnetic powder.

Engagement

When DC current is applied to the magnetic particle unit, a magnetic flux (chain) is formed, linking the shaft/disc to the housing. As the current is increased the magnetic flux becomes stronger, increasing the torque. The magnetic flux creates extremely smooth torque and virtually no "stick-slip".

Disengagement

When DC current is removed the magnetic powder is free to move within the cavity, allowing the input shaft to rotate freely.

Selection

Sizing

To properly size magnetic particle clutches or brakes the thermal energy (slip watts) and torque transmitted must be considered. If thermal energy and torque are known for the application, select the unit from the charts to the right.

Speed

V (RPM)* = $\frac{\text{Velocity (m/min)}}{\pi \cdot \text{ o coil}^{**} (m)}$

- * In rewind applications the motor RPM should be higher (10%) than the fastest spool RPM.
- ** In applications with the web running over a pulley or in a nip roll application use the pulley diameter as the roll diameter.

Thermal Energy (slip watts)

1- When a brake or clutch is slipping, heat is generated. Heat is described in terms of "energy rate" and is a function of speed, inertia, and cycle rate.

For continuous slip applications, such as tension control in an unwind or rewind application slip watts are calculated using the following formula:

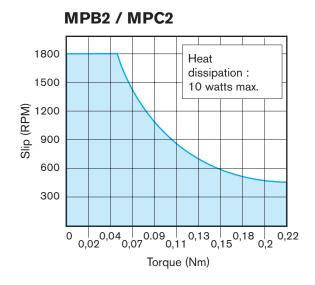
Slip Watts = $0,103 \cdot \text{torque (Nm)} \cdot \text{speed (RPM)}$

2- For cycling applications heat is generated intermittently, and is calculated using the following formula:

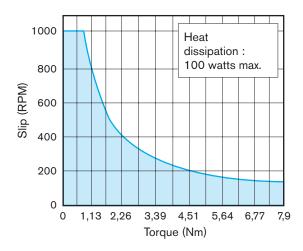
Slip Watts = $0,00077 \cdot J (kgm^2) \cdot \frac{speed (RPM)^2}{10000} \cdot f \frac{cycle}{min}$

The average heat input must be below the clutch or brake's heat dissipation rating. If the application generates intermittent heat dissipation, use the average speed for the thermal energy (slip watts) calculations.

Torque

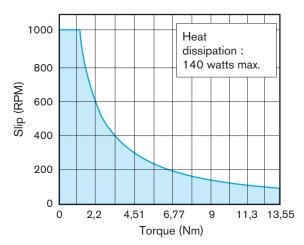

1- Tension applications calculate torque as a function of roll radius and tension.

$$C (Nm) = \frac{T (N) \cdot D}{2}$$

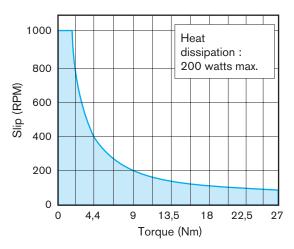

2- Soft/controlled stopping applications calculate torque as a function of inertia, speed and desired time to stop the load.

 $C (Nm) = \frac{J (kgm^2) \cdot N (RPM)}{9,55 \cdot Time (s)}$

Quick Selection Charts



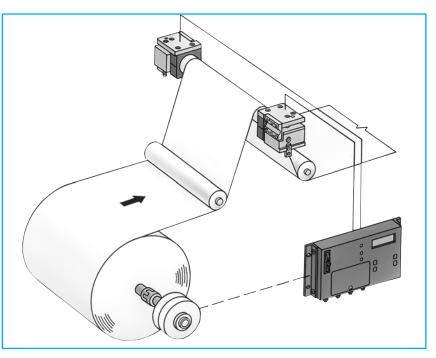
MPB70 / MPC70



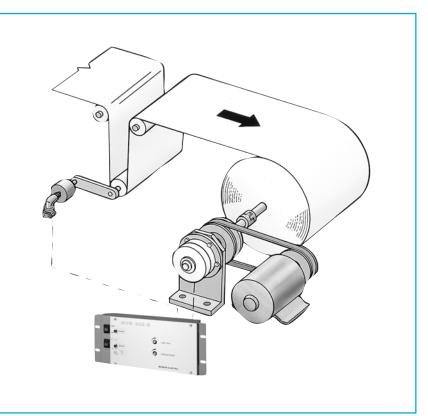
MPB15 / MPC15

MPB120 / MPC120

MPB240


Applications

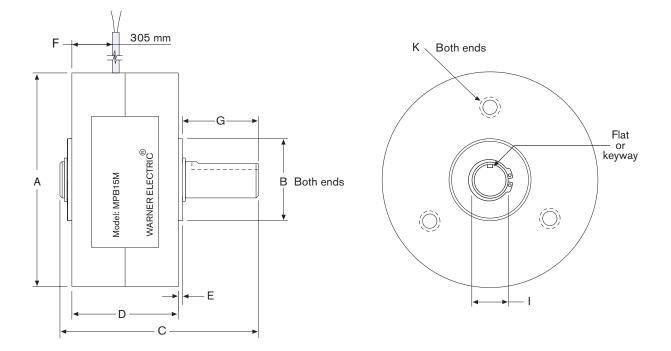
Warner Electric Precision Tork[™] magnetic particle clutches and brakes are the ideal solution for controlling and maintaining torque. If the application is tensioning, load simulation, torque limiting, or soft starts and stops the magnetic particle unit is the preferred torque controlling device.


Typical Applications

- Wire Processing (winding, hooking, cutting)
- Paper/Foil/Film Processing
- Labelling Applications
- Textile Processing
- □ Load profile simulation on:
 - Exercise Equipment
 - Flight Simulators
 - Healthcare Equipment
- **I** Life testing on:
 - Motors
 - Gears
 - Pulleys
 - Belts
 - Chains
 - Many other Rotating Devices
- **C**onveyors
- **D** Bottle Capping

Unwind stand under load cell control

Rewind stand under dancer control

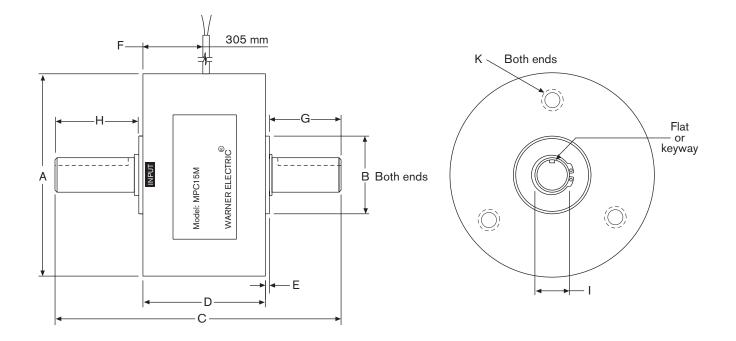

Tensioning

Magnetic Particle clutches and brakes offer smooth controlled torque for tensioning in both the unwind zone and rewind zone. Torque produced from the magnetic particle clutches and brakes is independent of slip speed, offering a distinct advantage over competing technologies. Since torque can be varied infinitely by varying the input current, the magnetic particle clutches and brakes are ideal in an open loop system. To close the loop in the tensioning system, combine the magnetic particle clutch or brake with a Warner Electric sensor and control, resulting in more precise control of tension.

Particle clutches and the MCS2000-CTDA control provide $= \frac{\text{Velocity}}{\pi \cdot D}$ Slip accurate closed loop tension control for rewind applications. = _____ **Application example:** π · 0.5 Information Full roll ø: 0,5 m = 78 RPM Tension: 22 N required: Heat Velocity: 122 m/min $= 0,103 \cdot torque \cdot slip$ dissipation $= 0,103 \cdot 5,5 \cdot 78$ = 44,46 watts $=\frac{22\cdot0,5}{2}$ Select a brake that exceeds the maximum torque and thermal energy requirements from Quick Selection = 5,5 Nm Chart - **MPB70**.

Particle clutches and the MCS202-E1 control provide accurate closed loop tension control for rewind applications.	Full roll \emptyset = $\frac{\text{Speed}}{(\pi \cdot D)}$
	$= \frac{90}{(\pi \cdot 0,23)}$
Application example:	= 125 RPM
Information Core ø : 0,08 m	
required: Full roll ø : 0,23 m Tension : 22 N	Slip = Input speed – Full roll ø
Velocity :	= 500 – 125 = 375 RPM
Max. torque. = $\frac{\text{Tension} \cdot \text{full roll } \emptyset}{2}$	Thermal Energy = $0,103 \cdot \text{Torque} \cdot \text{slip}$
$=\frac{22\cdot0.23}{2}$	$= 0,103 \cdot 2,53 \cdot 375 \\= 97,72 \text{ watts}$
= 2,53 Nm	Select a clutch that exceeds the maximum torque and
Speed	thermal energy requirements from the Quick Selection Chart – MPC120 .
$= \frac{\text{Speed}}{(\pi \cdot d)}$	* To maximize tension control and minimize heat generated, select
$= \frac{90}{(\pi \cdot 0,08)}$	a drive system that will result in an actual input speed as close to, but not less than, 30 RPM greater than the core RPM. In this example, $358 + 30 = 388$, would be ideal but 500 RPM was
= 358 RPM	more readily available.

Magnetic particle brakes - MPB


Specifications

Models	Max. torque	Drag torque	Rated voltage	Resistance	Rated current	Response zero force	Response with force	Inertia of output shaft	Max. heat dissipation	Max. speed	Weight
	(Nm)	(Nm)	(VDC)	(Ω)	(A)	(ms)	(ms)	(kgcm²)	(W)	(RPM)	(kg)
MPB2M-6-24	0,2	0,044	24	92	0,261	8	4	0,0037	10	1800	0,45
MPB15M-12-24	1,7	0,044	24	80	0,302	25	9	0,04	20	1000	1,36
MPB70M-19-24	7,9	0,11	24	35	0,677	70	17	0,23	100	1000	3,2
MPB120M-19-24	13,6	0,22	24	33	0,742	90	25	1,09	140	1000	5,45
MPB240M-24-24	27,1	0,44	24	19	1,286	150	45	3,92	200	1000	9,1
MPB240-007	26,4	0,44	24	19	1,286	150	45	3,92	200	1000	9,1

Dimensions (mm)

Models	Shaft ø I (h7)	- , . ,	DIN 6885 (length)	M	ounting K		Holes depth	
MPB2M-6-24	6	5,5 flat	t on 16	3 x M4 on	ø 34 equidistant		7	
MPB15M-12-24	12	4 x	20	3 x M5 on	ø 51 equidistant		7,5	
MPB70M-19-24	19	6 x	25,4	4 x M5 on a	ø 107 equidistant		16	
MPB120M-19-24	19	6 x	25,4	4 x M6 on a	ø 122 equidistant		19	
MPB240M-24-24	24	8 x	8 x 25,4		4 x M6 on ø 149 equidistant		16,5	
MPB240-007	29	27 flat	27 flat on 31,8		4 x M6 on ø 150 equidistant		8	
Models	Α	Pilot ø B	с	D	Е	F	G	
MPB2M-6-24	53,59	19,05 - 19,03	56,64	29,21	1,52	18	22,1	
MPB15M-12-24	74,39	28,59 - 28,56	77,47	37,08	1,78	21,84	34,29	
MPB70M-19-24	116,23	41,29 - 41,26	85,6	44,7	2,54	24,89	31,75	
MPB120M-19-24	133,35	41,29 - 41,26	102,11	55,12	2,54	29,97	38,1	
MPB240M-24-24	158,57	62,01 - 61,99	118,36	67,31	2,54	37,08	41,91	
MPB240-007	158,57	62,01 - 61,99	118,36	67,31	2,54	37,08	41,91	

Magnetic particle clutches - MPC

Specifications

Models	Max. torque	Drag torque	Rated voltage	Resistance	Rated current	Response zero	Response with	Inertia of output shaft	Max. heat dissipation	Max. speed	Weight
						force	force				
	(Nm)	(Nm)	(VDC)	(Ω)	(A)	(ms)	(ms)	(kgcm²)	(W)	(RPM)	(kg)
MPC2M-6-24	0,2	0,044	24	92	0,261	8	4	0,0039	10	1800	0,454
MPC15M-12-24	1,7	0,044	24	80	0,302	25	9	0,043	20	1000	2,72
MPC70M-19-24	7,9	0,11	24	35	0,677	70	17	0,26	100	1000	7,71
MPC120M-19-24	13,6	0,22	24	33	0,742	90	25	1,1	140	1000	9,98

Dimensions (mm)

Models	Shaft ø I (h7)	Keyway - DIN 6885 (Width x length)	Mounting K	Holes depth
MPC2M-6-24	6	5,5 flat on 16	3 x M4 on ø 34 equidistant	12,7
MPC15M-12-24	12	4 x 20	3 x M5 on ø 51 equidistant	12,7
MPC70M-19-24	19	6 x 25,4	4 x M5 on ø 107 equidistant	16
MPC120M-19-24	19	6 x 25,4	4 x M6 on ø 122 equidistant	19

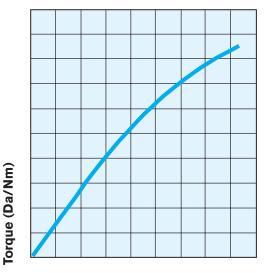
Models	Α	Pilot ø B	с	D	Е	F	G	н
MPC2M-6-24	53,59	19,05 - 19,03	94,74	46,99	1,52	28,46	22,35	22,35
MPC15M-12-24	75,39	28,59 - 28,56	132,3	71,12	1,78	42,93	34,3	23,4
MPC70M-19-24	116,46	41,29 - 41,26	166,37	93,22	2,54	52,83	34,29	34,29
MPC120M-19-24	133,35	62,01 - 61,99	178,31	101,6	2,54	60,96	38,1	34,3

The magnetic particle unit combines the resilience of a fluid coupling with the locked-in stability of a friction clutch. Torque is transmitted by a specially alloyed dry ferromagnetic powder, it apparent viscosity may be changed by modulation of the field coil current.

The units can sustain continuous slip (under maximum heat ratings) at a precise and stable torque value, which is determined by excitation level.

Slip between input and output members is not necessary in order to transmit torque, and provided load torque does not exceed the torque for which a unit is excited to transmit, locked-in synchronous operation will take place.

Conversely, if load torque exceeds the energised torque level, slip will occur in an absolutely smooth manner at the predetermined torque value. For all practical purposes, static and dynamic coefficients of friction are sensibly equal; also, output torque is independent of speed, or slip speed.


Powder performance is unaffected by temperature rise on the working surfaces, and units will, have at all times, a torque directly proportional to current.

It should be noted that use of a dry powder rather than a fluid-suspended powder medium promotes consistency and accuracy of torque control.

Briefly, the unit include two concentric members, the body or input member containing the field coil, and within it, and separated by a small annular gap, an inner rotor, or output member. The annular gap contains a ferromagnetic powder, which is activated when the coil is energised. The resultant flux which is generated, passed through the powder, causing it to align with the flux path, and thereby creates a driving bond between input and output members, the strength of which is only determined by the value of DC current applied to the coil.

Operating characteristics

The torque transmitted by powder units is proportional to field current, and is infinitely variable from maximum design rating down to practically zero in all models.

Torque/current characteristic curves can vary by 5 % dependent on whether current is increasing or decreasing. This is due to magnetic hysteresis.

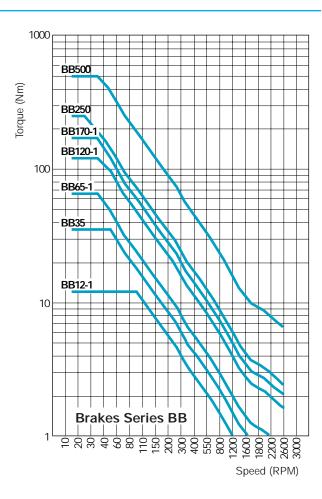
For all practical purposes torque is independent of speed, either with or without the presence of slip, and can be maintained within an accuracy of 5 % for speeds within the recommended operating range 50 to 2600 RPM.

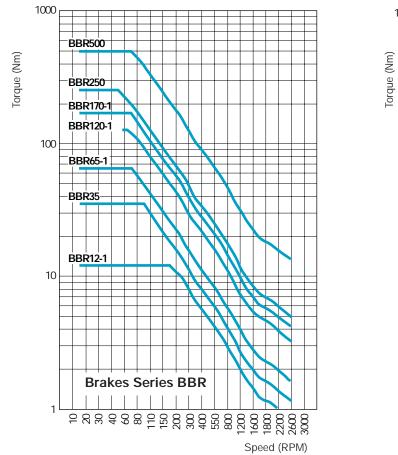
De-energised drag torque due to residual iron circuit magnetism, bearing and seal friction, is less than 1 % of design torque rating for any unit.

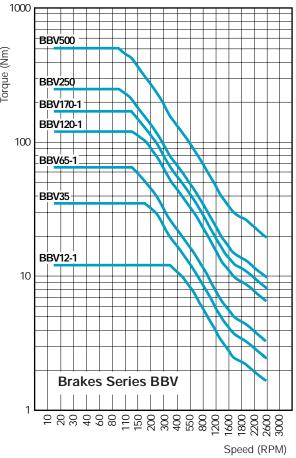
Response time to torque is determined by field coil inductance to resistance ratio plus a magnetic delay due to eddy current loss.

Note: to ensure satisfactory operation, all clutches and brakes must be mounted in horizontal axis. For vertical use, please consult us.

Absorption (A)


BRAKE selection

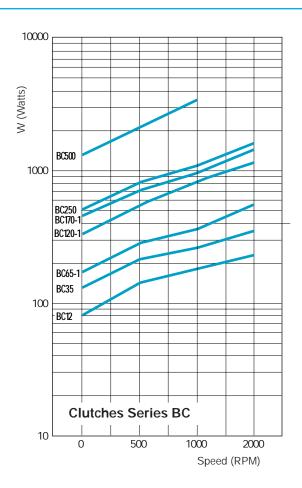

When min. roll speed and max. torque are known for the application, select the unit from theses charts.

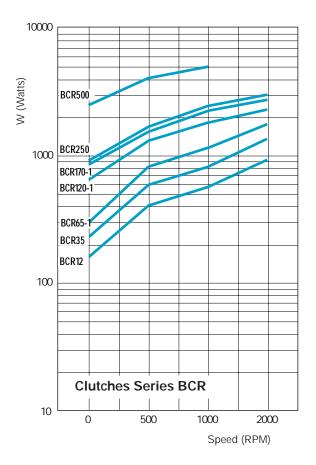

For continuous slip applications, as tension control in an unwind or rewind application, slip watts are calculated using the following formula:

Slip Watts =

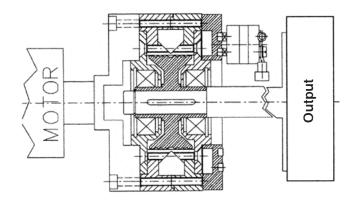
0,103 · max. torque (Nm) · min. roll speed (RPM)

CLUTCH selection


For continuous slip applications, as tension control in a rewind application, slip watts are calculated using the following formula:

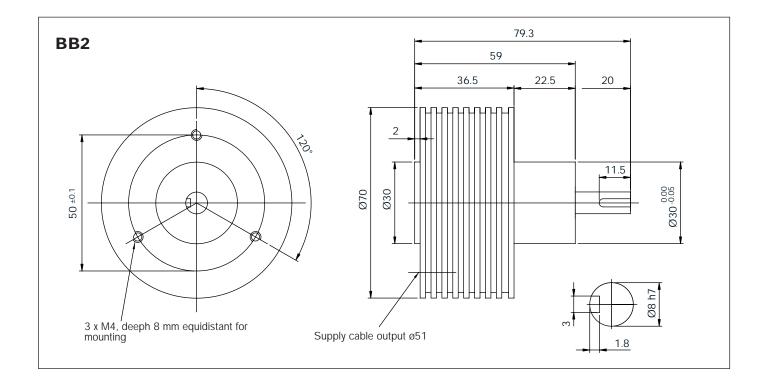

Slip Watts = 0,103 · max. torque (Nm) · slip speed (RPM)

In rewind applications the motor RPM should be higher (10 %) than the fastest spool RPM.


In applications with the web running over a pulley or in a nip roll application use the pulley diameter as the roll diameter.

In rewind application, don't forget to always mount the motor output to the exterior flange of clutch to enable maximum heat dissipation as drawing below.

Mounting example for clutches (in line)

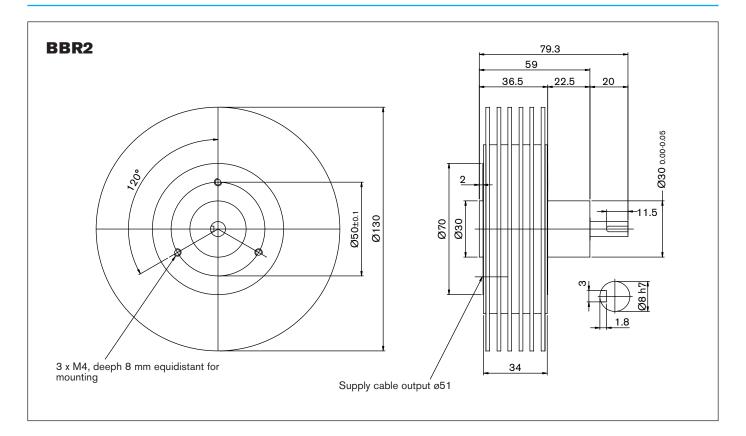


Quick selection

BRAKES	Torque (Nm)	Dissipation (W)	Page
BB2	2	35	49
BBR2	2	55	50
BB5	5	70	50
BBR5	5	160	51
BB12	12	100	51
BBR12	12	200	52
BBV12	12	400	52
BB35	35	150	53
BBR35	35	280	53
BBV35	35	600	54
BB65-1	65	170	54
BBR65-1	65	400	55
BBV65-1	65	800	55
BB120-1	120	400	56
BBR120-1	120	800	56
BBV120-1	120	1600	57
BB170-1	170	500	57
BBR170-1	170	1000	58
BBV170-1	170	2000	58
BB250	250	600	59
BBR250	250	1200	59
BBV250	250	2400	60
BB500	500	1600	60
BBR500	500	3200	61
BBV500	500	4800	61

CLUTCHES	Torque (Nm)	Dissipation (W)	Page
BC12	12	120/150	62
BCR12	12	440/550	62
BC35	35	200/250	63
BCR35	35	640/800	63
BC65-1	65	280/350	64
BCR65-1	65	960/1200	64
BC120	120	800/1000	65
BCR120	120	1600/2000	65
BC170-1	170	1000/1250	66
BCR170-1	170	2200/2750	66
BC250	250	1440/1800	67
BCR250	250	2600/3250	67
BC500	500	2250/3500	68
BCR500	500	4480/4800	68

XXR	=	Radiator
XXV	=	Fan

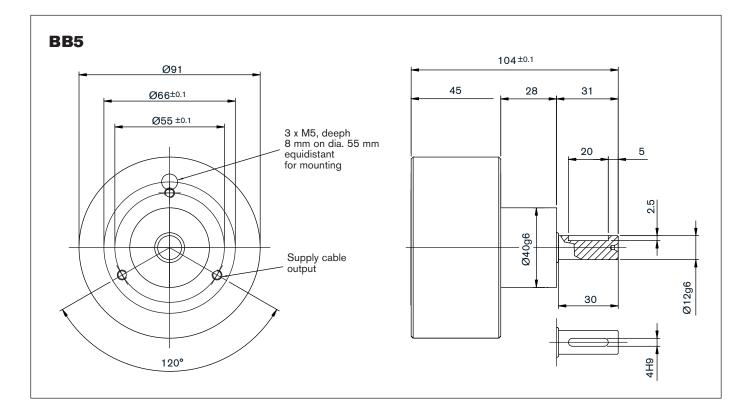


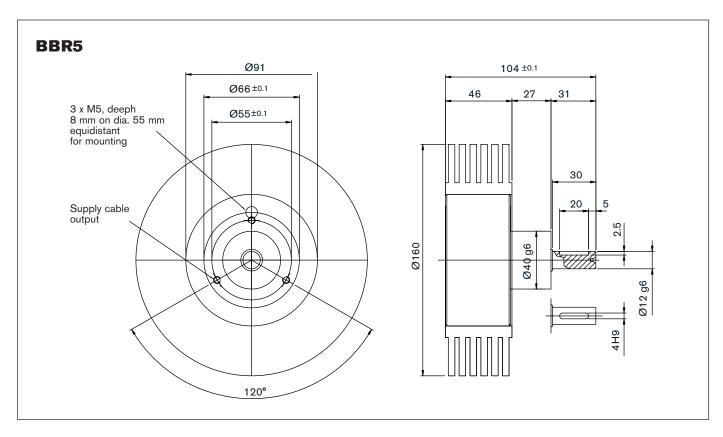
Specifications

Models		BB2
Maximum torque	Nm	2
Power dissipation	W	35
Voltage	V	24

Attention : For a correct use of the brake, the operating temperature must not be more than $70^\circ\,\text{C}$

Models		BB2
Current	A	0,8
Resistance at 20° C	Ohm	27
Weight	kg	0,8

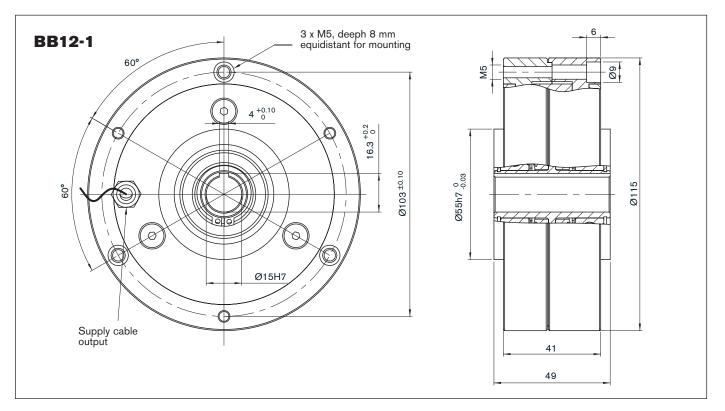


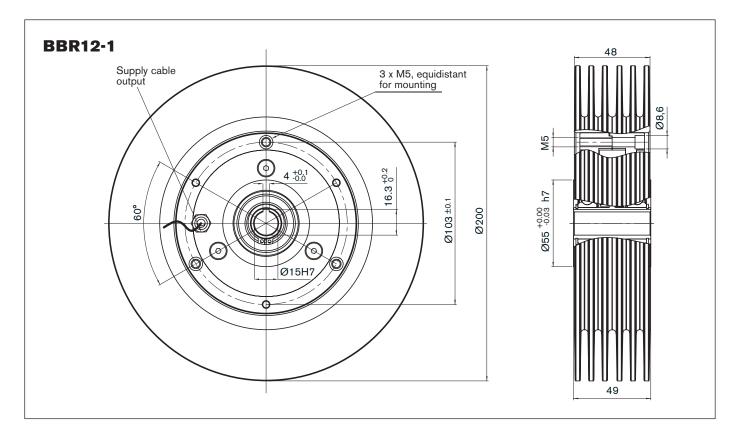

Specifications

Attention : For a correct use of the brake, the operating temperature must not be more than 70° C

Models		BBR2	BB5
Maximum torque	Nm	2	5
Power dissipation	W	55	70
Voltage	V	24	24

Models		BBR2	BB5
Current	А	0,8	1,3
Resistance at 20° C	Ohm	27	16,5
Weight	kg	1,2	1,8

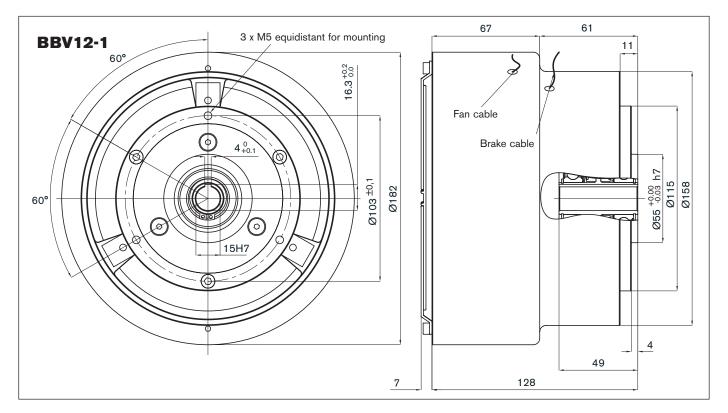


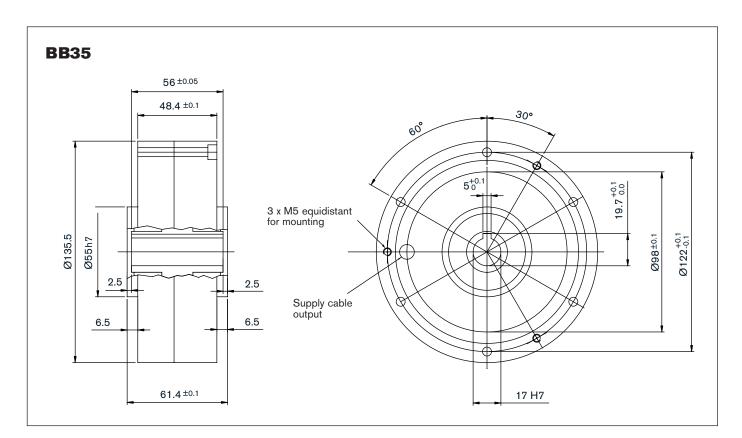

Specifications

Models		BBR5	BB12-1
Maximum torque	Nm	5	12
Residual torque	Nm	-	0,3
Voltage	V	24	24
Current	А	1,3	0,9

Attention : For a correct use of the brake,	the operating temperature must	not he more than 70° C
ALLOILION . FOR a CONFECT USE OF THE DIAKE,	the operating temperature must	

Models		BBR5	BB12-1
Résistance à 20° C	Ohm	16,5	25
Power dissipation	W	160	100
Weight	kg	2,2	2,5

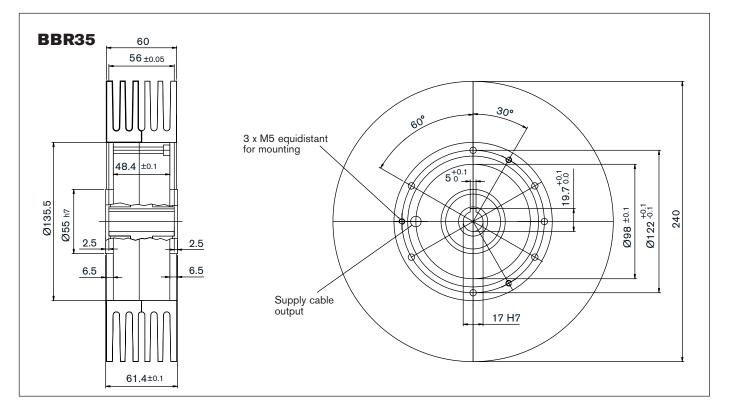


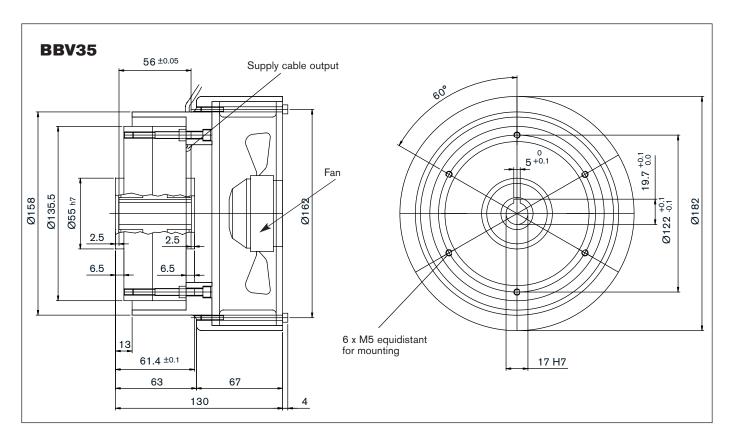

Specifications

Models		BBR12-1	BBV12-1	Mod
Maximum torque	Nm	12	12	Resis
Residual torque	Nm	0,3	0,3	Powe
Voltage	V	24	24	Weig
Current	A	0,9	0,9	Fan t

Models		BBR12-1	BBV12-1
Resistance at 20° C	Ohm	25	25
Power dissipation	W	200	400
Weight	kg	4,3	4,7
Fan tension	V	-	24 VDC,115/230 AC

Attention : For a correct use of the brake, the operating temperature must not be more than 70° C

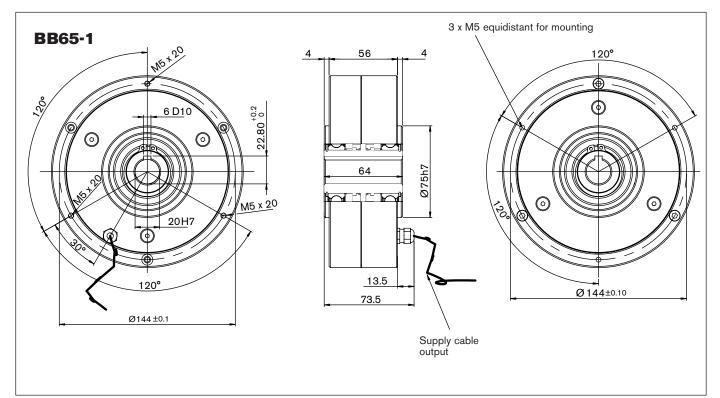



Specifications

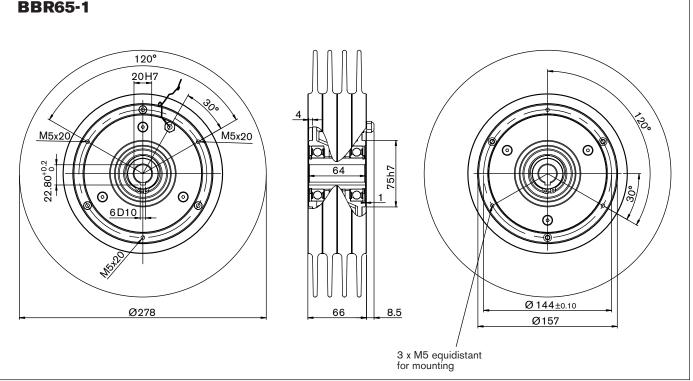
Attention : For a correct use of the brake, the operating temperature must not be more than 70° C

Models		BB35	BBR35
Maximum torque	Nm	35	35
Residual torque	Nm	0,4	0,4
Voltage	V	24	24
Current	А	0,9	0,9

Modèles		BB35	BBR35
Resistance at 20° C	Ohm	20	20
Power dissipation	W	150	280
Weight	kg	4,3	7,3



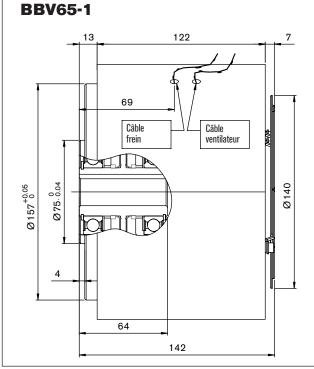
Specifications

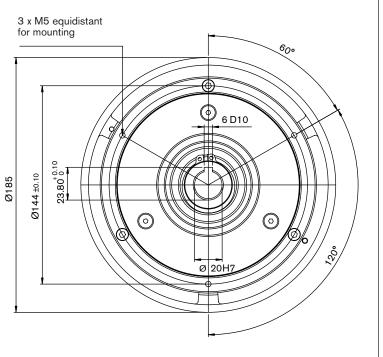

Models		BBV35	BB65-1
Maximum torque	Nm	35	65
Residual torque	Nm	0,4	0,4
Voltage	V	24	24
Current	A	0,9	1

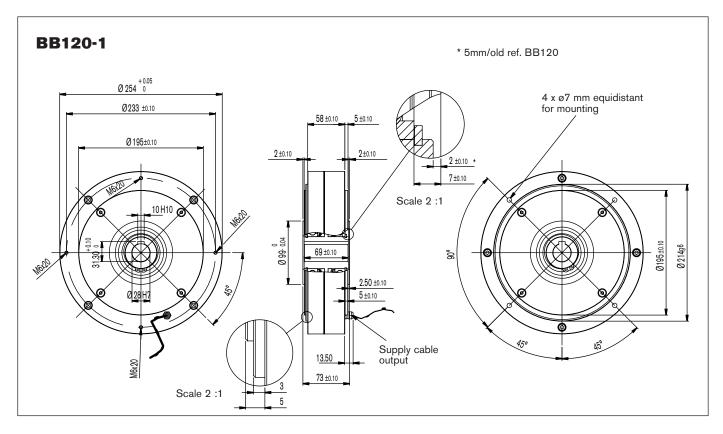
Models		BBV35	BB65-1
Resistance at 20° C	Ohm	20	24
Power dissipation	W	600	400
Weight	kg	6,4	9
Fan tension	V	24 VDC,115/230 AC	-

Attention : For a correct use of the brake, the operating temperature must not be more than 70° C

BBR65-1

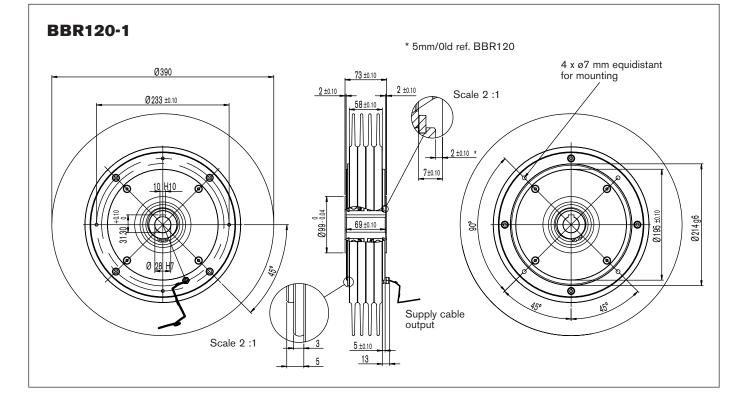


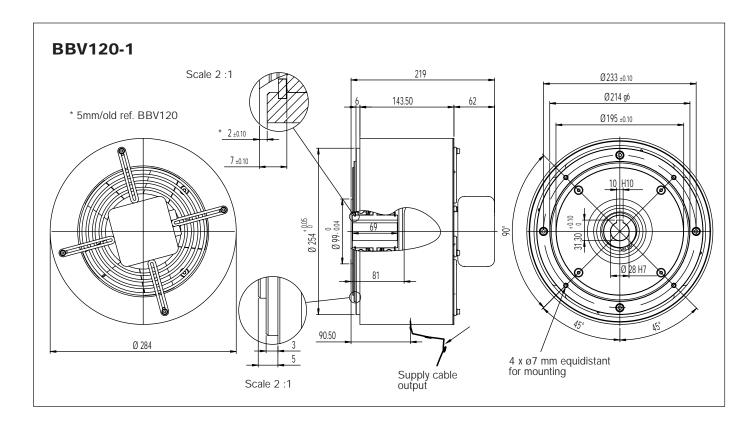

Specifications


Attention : For a correct use of the brake, the operating temperature must not be more than $70^{\circ}\ {\rm C}$

Models		BBR65-1	BBV65-1
Maximum torque	Nm	65	65
Residual torque	Nm	0,4	0,4
Voltage	V	24	24
Current	A	0,95	1

Models		BBR65-1	BBV65-1
Resistance at 20° C	Ohm	24	24
Power dissipation	W	400	800
Weight	kg	9,8	8,8
Fan tension	V	-	24 VDC,115/230 A0

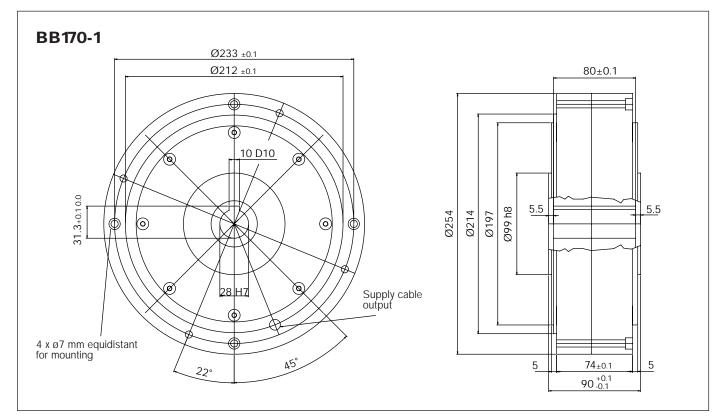


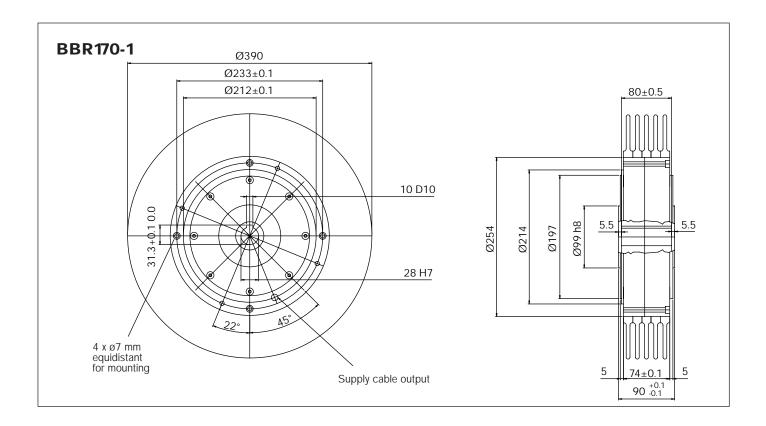

Specifications

Models		BB120-1	BBR120-1
Maximum torque	Nm	120	120
Residual torque	Nm	0,6	0,6
Voltage	V	24	24
Current	А	2	2

Attention : For a correct use of the brake, the operating temperature must not be more than 70° C

Models		BB120-1	BBR120-1
Resistance at 20° C	Ohm	11	11
Power dissipation	W	400	800
Weight	kg	18	23

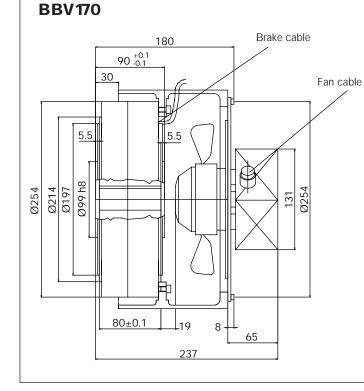


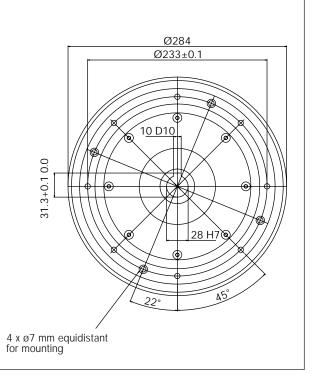

Specifications

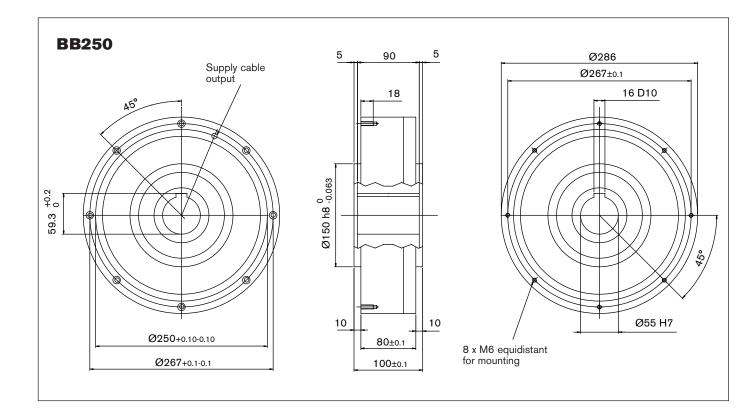
Models		BBV120-1	BB170-1
Maximum torque	Nm	120	170
Residual torque	Nm	0,6	0,7
Voltage	V	24	24
Current	A	2	2

Attention : For a correct use of the brake, the operating temperature must not be more than 70 $^\circ$ C

Models		BBV120-1	BB170-1
Resistance at 20° C	Ohm	11	11
Power dissipation	W	1600	500
Weight	kg	24	24
Fan tension	V	24 VDC,115/230 AC	-

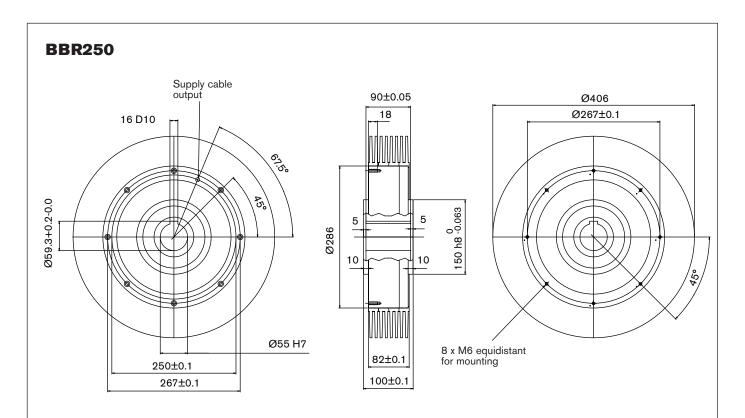


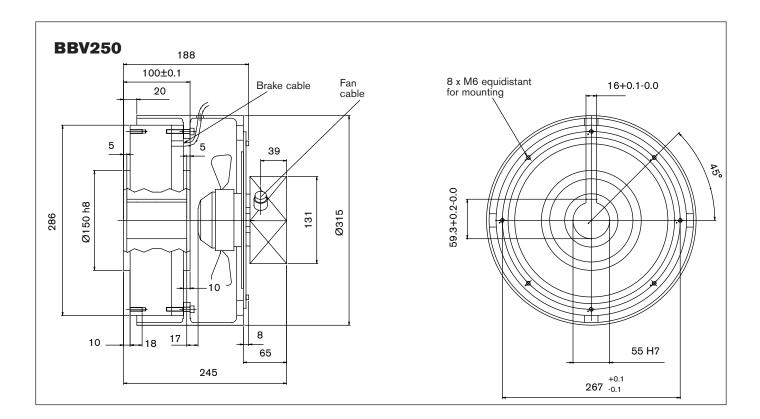

Specifications


Models		BBR170-1	BBV170-1
Maximum torque	Nm	170	170
Residual torque	Nm	0,7	0,7
Voltage	V	24	24
Current	А	2	2

Attention : For a correct use of the brake, the operating temperature must not be more than 70° C

Models		BBR170-1	BBV170-1
Resistance at 20° C	Ohm	11	11
Power dissipation	W	1000	2000
Weight	kg	30	28
Fan tension	٧	-	24 VDC,115/230 AC

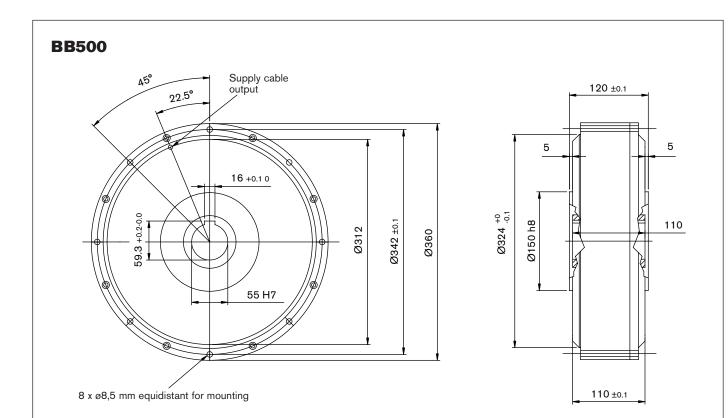


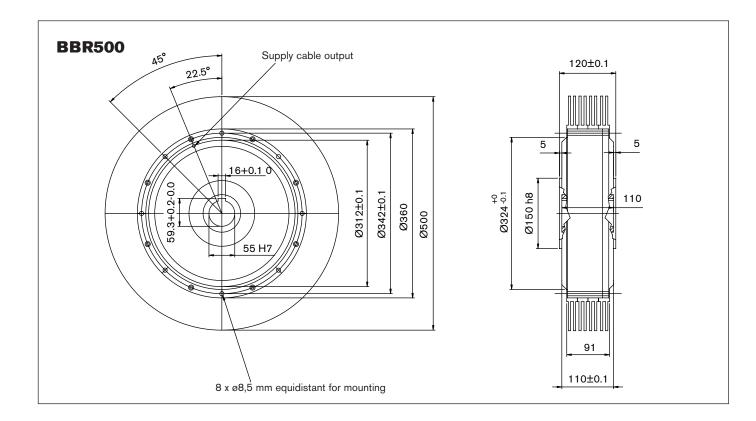

Specifications

 $Attention: For a correct use of the brake, the operating temperature must not be more than <math display="inline">70^{\circ}\ {\rm C}$

Models		BB250	BBR250
Maximum torque	Nm	250	250
Residual torque	Nm	1	1
Voltage	V	24	24
Current	А	1,1	1,1

Models		BB250	BBR250
Resistance at 20° C	Ohm	22	22
Power dissipation	W	600	1200
Weight	kg	32	38

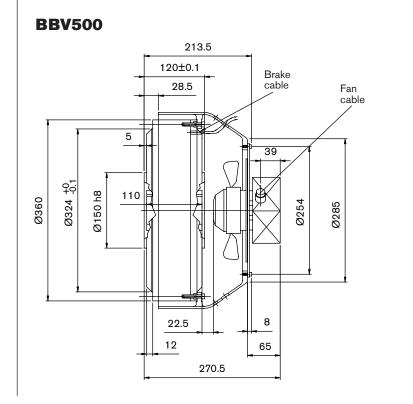


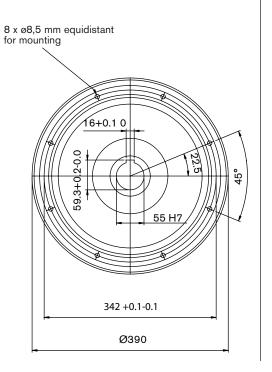

Specifications

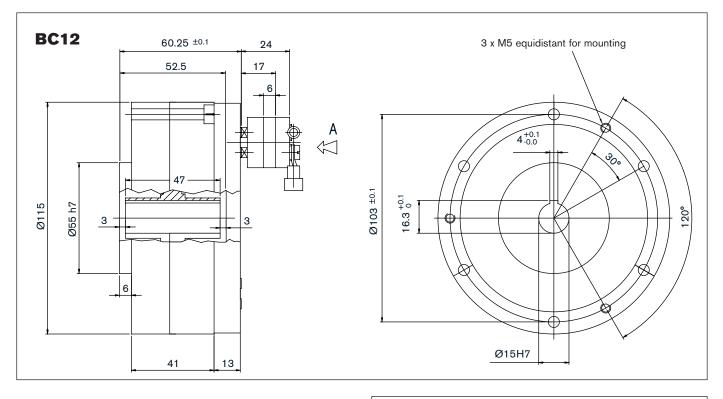
Attention : For a correct use of the brake, the operating temperature must not be more than 70° (3
---	---

Models		BBV250	BB500
Maximum torque	Nm	250	500
Residual torque	Nm	1	1
Voltage	V	24	24
Current	A	1,1	0,9

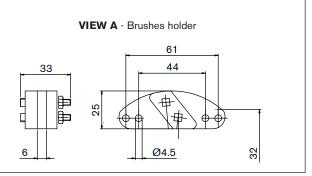
Models		BBV250	BB500
Resistance at 20° C	Ohm	22	27
Power dissipation	W	2400	1600
Weight	kg	38	59
Fan tension	V	24 VDC,115/230 AC	-

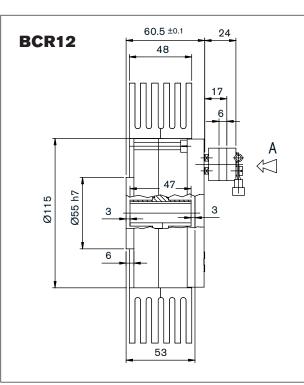


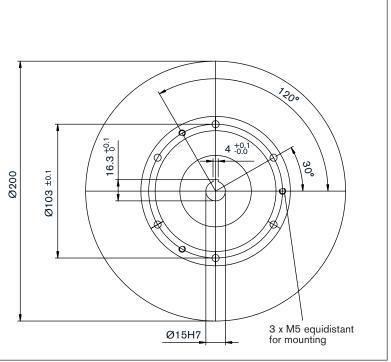

Specifications

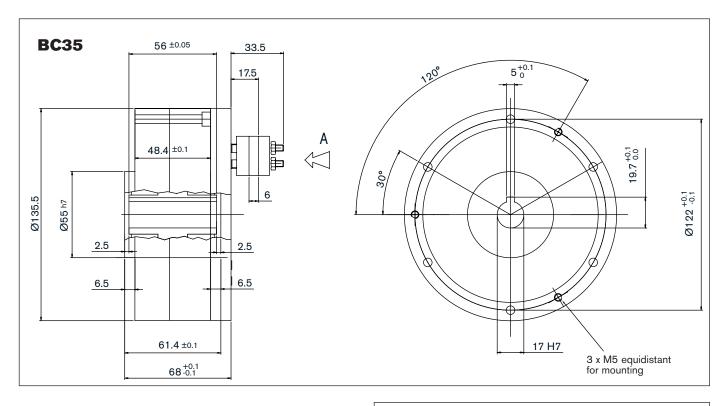

Attention : For a correct use of the brake, the operating temperature must not be more than 70° C

Models		BBR500	BBV500
Maximum torque	Nm	500	500
Residual torque	Nm	1	1
Voltage	V	24	24
Current	Α	0,9	0,9

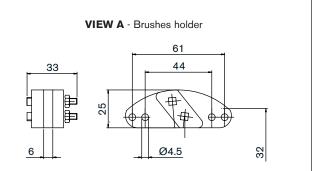

BBR500 **BBV**500 Models Resistance at 20° C Ohm 27 27 Power dissipation W 3200 4800 Weight 62 62 kg 24 VDC,115/230 AC Fan tension V _

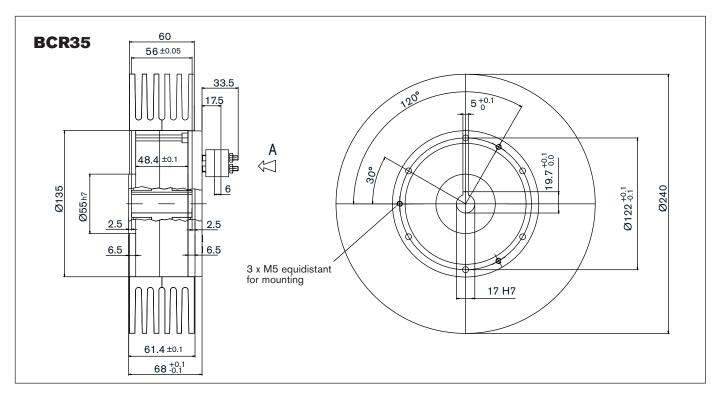


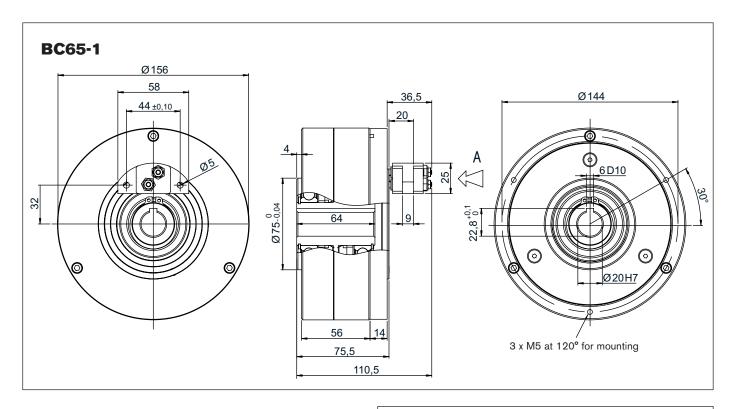




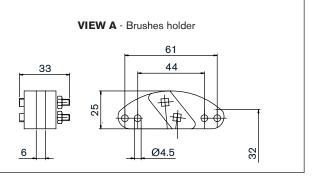
Models		BC12	BCR12
Maximum torque	Nm	12	12
Residual torque	Nm	0,3	0,3
Voltage	V	24	24
Current	А	0,9	0,9
Resistance at 20° C	Ohm	25	25
Power dissipation at 500 RPM	W	120	440
Power dissipation at 1000 RPM	W	150	550
Weight	kg	2,8	4,6

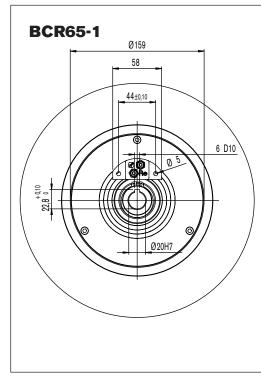


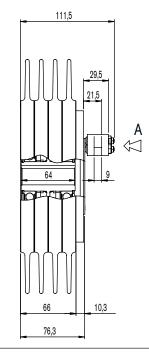


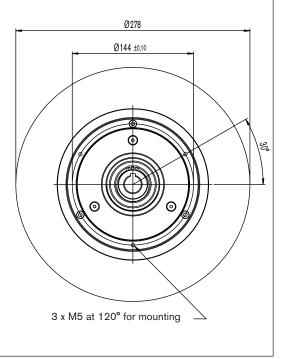


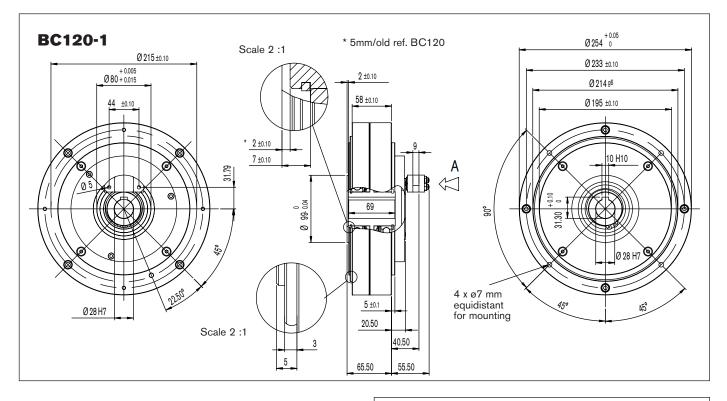
Models		BC35	BCR35
Maximum torque	Nm	35	35
Residual torque	Nm	0,4	0,4
Voltage	V	24	24
Current	Α	0,9	0,9
Resistance at 20° C	Ohm	20	20
Power dissipation at 500 RPM	W	200	640
Power dissipation at 1000 RPM	W	250	800
Weight	kg	4,7	7,7

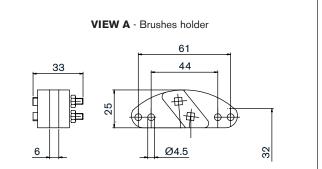


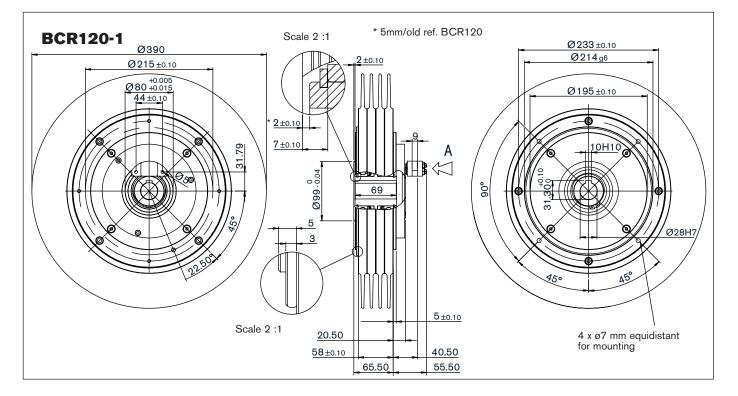


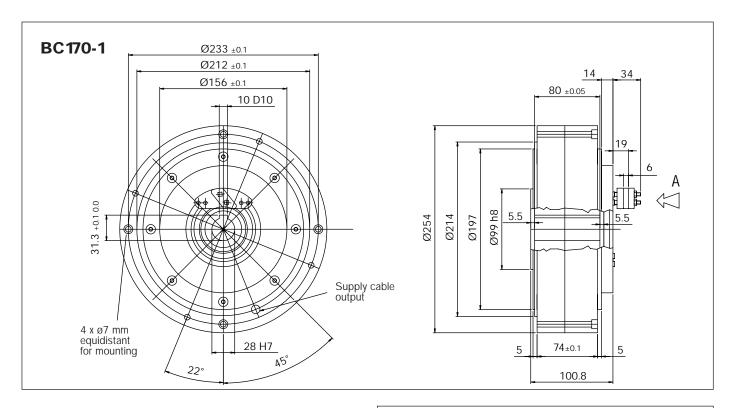


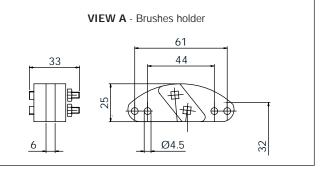

Specifications Attention : the operating temperature must not be more than 70° C

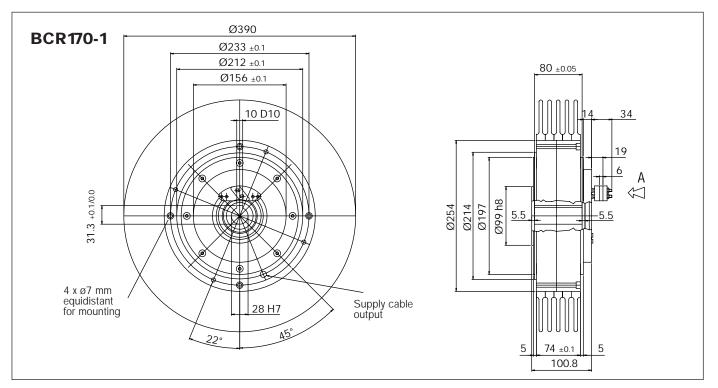

Models		BC65-1	BCR65-1
Maximum torque	Nm	65	65
Residual torque	Nm	0,4	0,4
Voltage	V	24	24
Current	Α	1	1
Resistance at 20° C	Ohm	24	24
Power dissipation at 500 RPM	W	280	960
Power dissipation at 1000 RPM	W	350	1200
Weight	kg	7,5	10,5

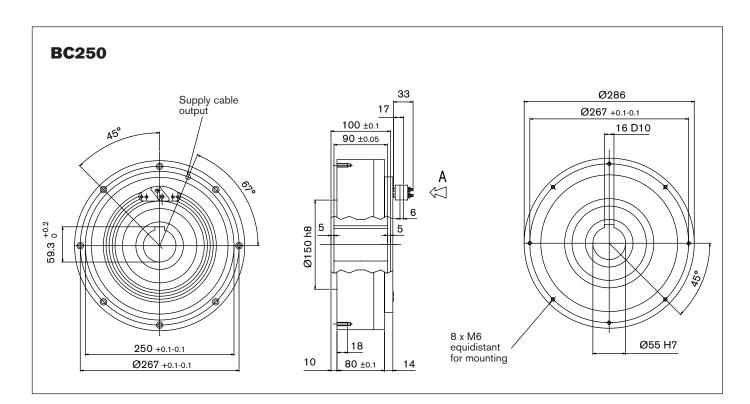


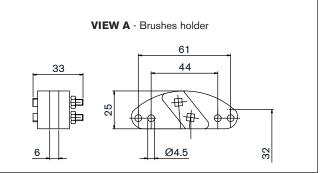


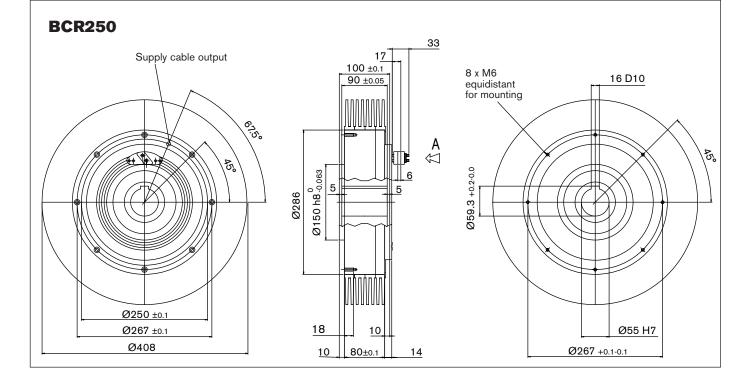


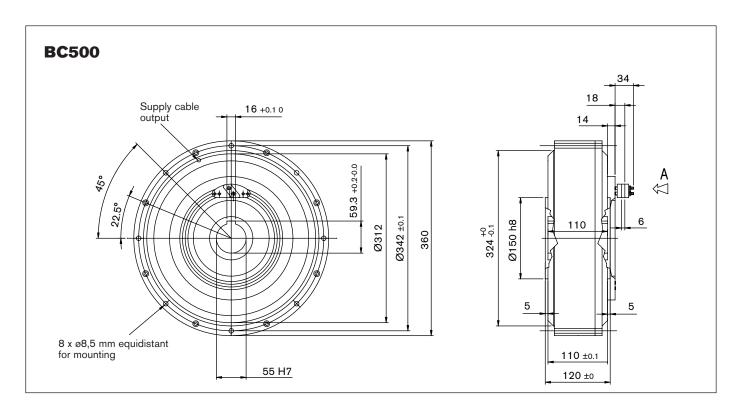

Models		BC120-1	BCR120-1
Maximum torque	Nm	120	120
Residual torque	Nm	0,6	0,6
Voltage	V	24	24
Current	Α	2	2
Resistance at 20° C	Ohm	11	11
Power dissipation at 500 RPM	W	800	1600
Power dissipation at 1000 RPM	W	1000	2000
Weight	kg	19	24

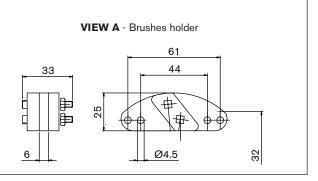


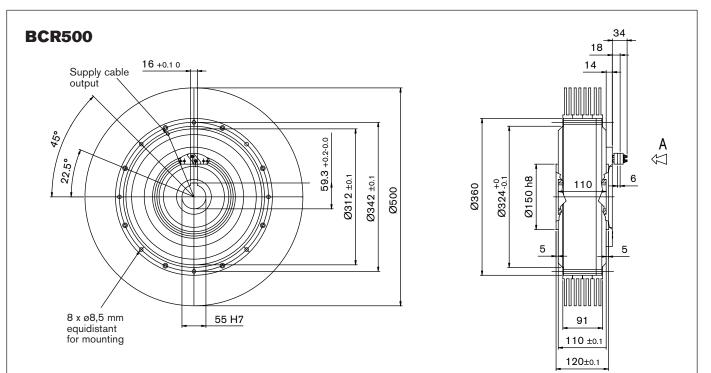



Models		BC170-1	BCR170-1
Maximum torque	Nm	170	170
Residual torque	Nm	0,7	0,7
Voltage	V	24	24
Current	А	2	2
Resistance at 20° C	0hm	11	11
Power dissipation at 500 RPM	W	1000	2200
Power dissipation at 1000 RPM	W	1250	2750
Weight	kg	25	29






Models		BC250	BCR250
Maximum torque	Nm	250	250
Residual torque	Nm	1	1
Voltage	V	24	24
Current	Α	1,1	1,1
Resistance at 20° C	Ohm	22	22
Power dissipation at 500 RPM	W	1440	2600
Power dissipation at 1000 RPM	W	1800	3250
Weight	kg	33	40



Models		BC500	BCR500
Maximum torque	Nm	500	500
Residual torque	Nm	1	1
Voltage	۷	24	24
Current	Α	0,9	0,9
Résistance at 20° C	Ohm	27	27
Power dissipation at 500 RPM	W	2250	4480
Power dissipation at 1000 RPM	W	3500	4800
Weight	kg	62	65

Magnetic clutches and brakes

Precision Tork[™] units provide constant torque independent of slip speed. They offer excellent overload and jam protection for all drive train components and also provide soft starts with zero slip when a preset torque is reached. Precision Tork permanent magnet clutches and brakes do not require maintenance and provide extremely long life.

Features and Benefits

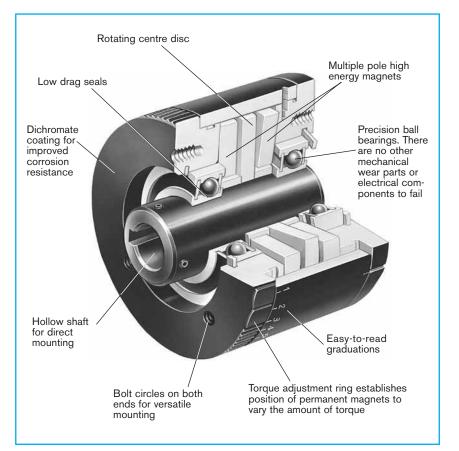
Fast, precise torque adjustment

- Torque is set with a large knurled adjustment ring
- Infinite adjustability between minimum and maximum settings. This allows units to be fine tuned to your unique requirement.

Torque is constant with respect to speed

- □ By using the Precision Tork[™] unit, you can solve almost any torque control problem
- Torque is extremely consistent and smooth at low, as well as high speeds

No external control or power source


- □ Simple to install
- Nothing to monitor
- Unaffected by power interruption or power fluctuation
- □ Safe to use

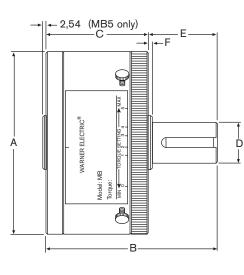
Dependable performance

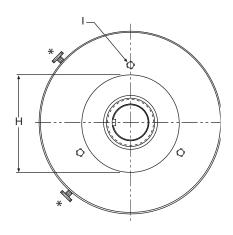
- Smallest possible transition from static to dynamic torque
- Virtually eliminates the "stick-slip" phenomenon associated with friction devices
- Long life. The only wearing parts are the ball bearings
- □ Extremely accurate. Precision Tork[™] units out-perform all other devices at low RPM

Versatile mounting: Easy to retrofit

- Clutches are available with hollow bores for mounting on motor shafts or jack shafts
- □ Bolt circles allow for fixed mounting, adding a pulley, or stub shaft adapters
- Brakes are available with solid shaft outputs

SPECIAL APPLICATIONS


Specials are our business...

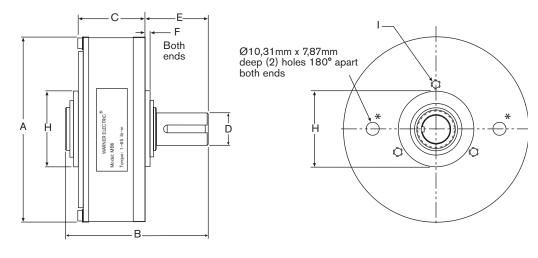

- Special shaft bores and keyways
- Shaft extensions
- System retrofits
- **T** Fixed torque units

Magnetic brakes - MB

*Set screw adjustment

Drawing C

Specifications


Standard models	Stainless steel models	Max. torque (Nm)	Max. heat dissipation (W)	Inertia of output shaft (kgm²)	Bending moment (Nm)	Max. speed (RPM)	Weight (kg)
MB1M-5	MB1MS-5	0,0078	3	2,5 x 10 ⁻⁷	0,11	3600	0,057
MB2M-6	MB2MS-6	0,16	10	6,3 x 10 ⁻⁶	0,56	3600	0,31
MB3M-8	MB3MS-8	0,68	18	4,9 x 10 ⁻⁵	1,13	1800	0,9
MB4M-14	MB4MS-14	1,24	22	9,7 x 10 ⁻⁵	1,13	1800	1,13
MB4M-15	MB4MS-15	1,24	22	9,7 x 10 ⁻⁵	1,13	1800	1,13
MB5M-19	MB5MS-19	3,4	72	5,8 x 10 ⁻⁴	2,82	1800	4,08
MB5M-24	MB5MS-24	3,4	72	5,8 x 10 ⁻⁴	2,82	1800	4,08
MB5.5M-19	MB5.5MS-19	5,6	110	8,8 x 10 ⁻⁴	2,82	1800	4,99
MB5.5M-24	MB5.5MS-24	5,6	110	8,8 x 10 ⁻⁴	2,82	1800	4,99
MB6M-19	MB6MS-19	7,9	150	1,4 x 10 ⁻³	2,82	1800	5,44
MB6M-24	MB6MS-24	7,9	150	1,4 x 10 ⁻³	2,82	1800	5,44
MB6DM-24	-	15,8	300	2,5 x 10 ⁻³	2,82	1800	11,37
MB9M-24	-	33,9	345	19 x 10 ⁻³	5,65	1200	20,38

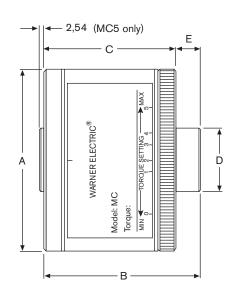
Dimensions (mm)

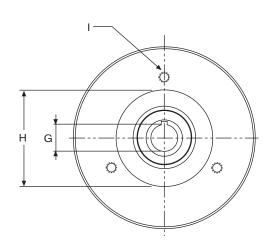
Models	Drawing	А	В	с	E	F	Pilot ø H
MB1M-5	С	25,1	34,8	21,59	13,2	-	10,01 - 10,06
MB2M-6	С	46,99	59,9	34,29	24,4	-	22,25 - 22,30
MB3M-8	С	69,6	76,71	50,2	26,5	0,76	35,08 - 35,13
MB4M-14	С	82,04	75,6	51,1	22,2	2,29	47,04 - 47,09
MB4M-15	С	82,04	75,6	51,1	22,2	2,29	47,04 - 47,09
MB5M-19	С	118,11	114	67	41,3	3,1	61,98 - 62,00
MB5M-24	С	118,11	114	67	41,3	3,1	61,98 - 62,00
MB5.5M-19	С	134,1	114,6	67,1	47,5	6,2	61,98 - 62,00
MB5.5M-24	С	134,1	114,6	67,1	47,5	6,2	61,98 - 62,00
MB6M-19	D	153,5	113,7	51,2	52,4	4,57	61,98 - 62,00
MB6M-24	D	153,5	113,7	51,2	52,4	4,57	61,98 - 62,00
MB6DM-24	**	**	**	**	**	**	82,50 - 82,55
MB9M-24	D	238,76	137,1	88,65	45,72	3,3	82,50 - 82,55

** Drawing on request

Magnetic brakes - MB

*Spanner wrench adjustment


Drawing D

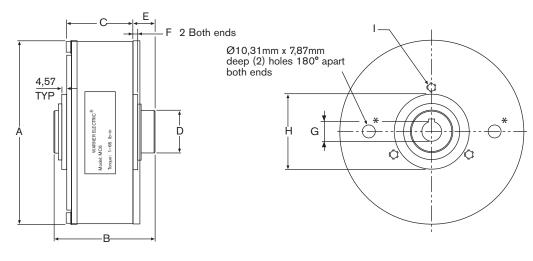

Dimensions (mm)

Models	Shaft ø D (h7)	Keyway - DIN 6885 Width x length)	Mounting (I)	Holes depth	Adjust screws
MB1M-5	5	4,5 Flat on 10,2	3 x M3 on ø 15,5 equidistant	6,4	M3
MB2M-6	6	5,5 Flat on 19	3 x M4 on ø 32 equidistant	8	M4
MB3M-8	8	7,5 Flat on 22,4	3 x M4 on ø 48 equidistant	11	M4
MB4M-14	14	5 x 19,3	3 x M5 on ø 60 equidistant	11	M4
MB4M-15	15	5 x 19,3	3 x M5 on ø 60 equidistant	11	M4
MB5M-19	19	6 x 25	3 x M6 on ø 80 equidistant	12,7	M5
MB5M-24	24	8 x 25	3 x M6 on ø 80 equidistant	12,7	M5
MB5.5M-19	19	6 x 25	3 x M6 on ø 100 equidistant	15,5	M5
MB5.5M-19	19	6 x 25	3 x M6 on ø 73,3 equidistant	12,7	M5
MB5.5M-24	24	8 x 25	3 x M6 on ø 100 equidistant	15,5	M5
MB5.5M-24	24	8 x 25	3 x M6 on ø 73,3 equidistant	12,7	M5
MB6M-19	19	6 x 25	3 x M6 on ø 100 equidistant	7,9	M5
MB6M-19	19	6 x 25	3 x M6 on ø 73,3 equidistant	7,9	M5
MB6M-24	24	8 x 25	3 x M6 on ø 100 equidistant	7,9	M5
MB6M-24	24	8 x 25	3 x M6 on ø 73,3 equidistant	7,9	M5
MB6DM-24	24	8 x 25	3 x M8 on ø 101,6 equidistant	13	Knob
MB9M-24	24	8 x 25	4 x M6 on ø 149,23 equidistant	12,7	M5
MB9M-24	24	8 x 25	3 x M6 on ø 107,95 equidistant	12,7	M5

Magnetic clutches - MC

Drawing A

Specifications

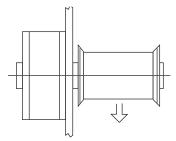

Standard models	Stainless steel models	Max. torque (Nm)	Max. heat dissipation (W)	Inertia of output shaft (kgcm ²)	Bending moment (Nm)	Max. speed (RPM)	Weight (kg)
MC2M-6 MC3M-8 MC4M-8 MC4M-14 MC4M-15 MC4M-16 MC4M-001 MC5M-16 MC5M-19 MC5,5M-19 MC5,5M-19 MC5,5M-19	MC2MS-6 MC3MS-8 MC4MS-8 MC4MS-14 MC4MS-15 MC4MS-16 MC4MS-001 MC5MS-16 MC5MS-19 MC5,5MS-16 MC5,5MS-19 MC6MS-16	0,16 0,68 1,24 1,24 1,24 1,24 2 3,4 3,4 5,6 5,6 7,9	10 18 22 22 22 22 22 22 72 72 72 110 110 150	$\begin{array}{c} 4,9 \times 10^{-6} \\ 4,6 \times 10^{-5} \\ 9,4 \times 10^{-5} \\ 9,4 \times 10^{-5} \\ 9,4 \times 10^{-5} \\ 9,4 \times 10^{-5} \\ 1,7 \times 10^{-4} \\ 5,4 \times 10^{-4} \\ 5,4 \times 10^{-4} \\ 8,5 \times 10^{-4} \\ 8,5 \times 10^{-4} \\ 1,4 \times 10^{-3} \end{array}$	0,56 1,1 1,1 1,1 1,1 1,1 1,1 2,82 2,82 2,82	3600 1800 1800 1800 1800 1800 1800 1800 1	0,31 0,9 1,13 1,13 1,13 1,13 1,13 1,58 4,08 4,08 4,08 4,99 4,99 5,44
MC6M-19 MC6DM-19 MC9M-24	MC6MS-19 - -	7,9 15,8 33,9	150 300 345	1,4 x 10 ⁻³ 2,5 x 10 ⁻³ 19 x 10 ⁻³	2,82 2,82 5,65	1800 1800 1200	5,44 10,84 20,38

Dimensions (mm)

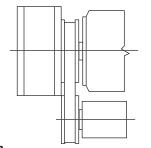
Models	Drawing	А	В	С	D	E	F	Pilot ø H
MC2M-6	A	46,99	41,1	34,29	9,4	6,8	-	22,25 - 22,30
MC3M-8	A	69,6	56,3	50,2	14,99	6,1	-	35,08 - 35,13
MC4M-8	A	82,04	57,7	51,1	24,99	6,6	-	47,04 - 47,09
MC4M-14	A	82,04	57,7	51,1	24,99	6,6	-	47,04 - 47,09
MC4M-15	A	82,04	57,7	51,1	24,99	6,6	-	47,04 - 47,09
MC4M-16	A	82,04	57,7	51,1	24,99	6,6	-	47,04 - 47,09
MC4M-001	A	82,04	61,95	55,32	24,99	6,6	-	47,04 - 47,09
MC5M-16	A	118,11	80,77	67	35	13,8	-	61,98 - 62,00
MC5M-19	A	118,11	80,77	67	35	13,8	-	61,98 - 62,00
MC5,5M-16	A	134,1	81,7	67,1	35	14,6	-	61,98 - 62,00
MC5.5M-19	A	134,1	81,7	67,1	35	14,6	-	61,98 - 62,00
MC6M-16	В	153,5	80,77	51,82	34,6	19,5	4,57	61,98 - 62,00
MC6M-19	В	153,5	80,77	51,82	35	19,5	4,57	61,98 - 62,00
MC6DM-19	*	*	*	*	*	*	*	82,50 - 82,55
MC9M-24	В	238,76	106,2	88,65	44,8	13,97	3,3	82,50 - 82,55

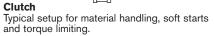
* Drawing on request

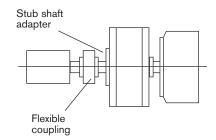
Magnetic clutches - MC


*Spanner wrench adjustment

Drawing B


Dimensions (mm)

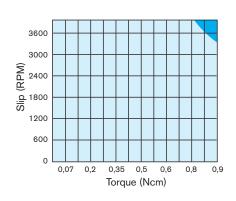

Models	Bore ø G (H8)	Keyway (Width) - DIN 6885	Mounting (I)	Holes depth	Adjust screws
MC2M-6	6	Roll pin Ø 3 mm	3 x M4 on ø 32 equidistant	8	MЗ
MC3M-8	8	2 x M4 90°	3 x M4 on ø 48 equidistant	11	M4
MC4M-8	8	7,5 Flat	3 x M5 on ø 60,33 equidistant	11	M4
MC4M-14	14	3	3 x M5 on ø 60,33 equidistant	11	M4
MC4M-15	15	5	3 x M5 on ø 60,33 equidistant	11	M4
MC4M-16	16	5	3 x M4 on ø 60 equidistant	11	M4
MC4M-001	16	5	3 x M5 on ø 60 equidistant	11	M4
MC5M-16	16	5	3 x M6 on ø 80 equidistant	12,7	M5
MC5M-19	19	6	3 x M6 on ø 80 equidistant	12,7	M5
MC5,5M-16	16	5	3 x M6 on ø 100 equidistant	15,5	M5
	16	5	3 x M6 on ø 73,03 equidistant	12,7	M5
MC5,5M-19	19	6	3 x M6 on ø 100 equidistant	15,5	M5
	19	6	3 x M6 on ø 73,03 equidistant	12,7	M5
MC6M-16	16	5	3 x M6 on ø 100 equidistant	7,9	M5
	16	5	3 x M6 on ø 73,03 equidistant	7,9	M5
MC6M-19	19	6	3 x M6 on ø 100 equidistant	7,9	M5
	19	6	3 x M6 on ø 73,03 equidistant	7,9	M5
MC6DM-19	19	6	3 x M8 on ø 101,6 equidistant	13	M6
MC9M-24	24	8	4 x M6 on ø 149,23 equidistant	12,7	M5
	24	8	3 x M6 on ø 107,95 equidistant	12,7	M5

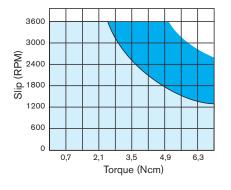

Typical mounting

Brake Typical setup for tensioning wire, film and fibers.

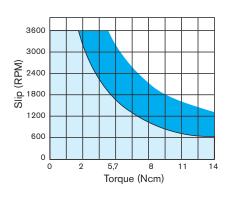
Clutch coupling Typical setup for torque limiting protection used for labeling, capping and printing applications.

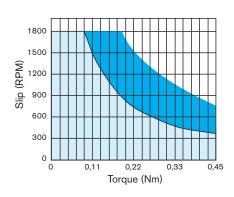
Magnetic clutches and brakes

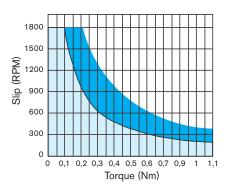

Heat Dissipation Charts

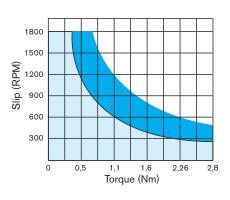

Intermittent operation (50 % duty cycle)

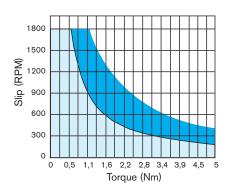
Continuous operation

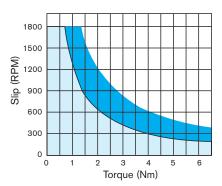

MB1

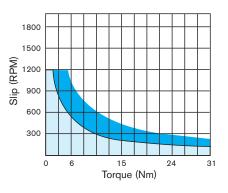

MC1.5/MB1.5


MC2/MB2

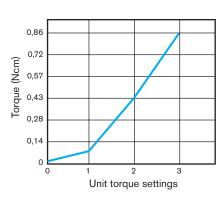

MC3/MB3

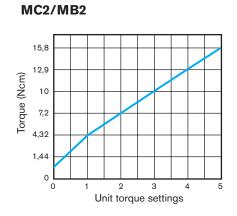

MC4/MB4


MC5/MB5

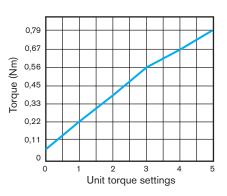

MC5.5/MB5.5

MC6/MB6

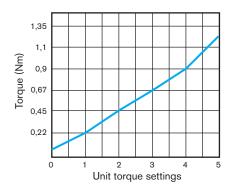

MC9/MB9

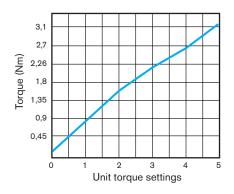


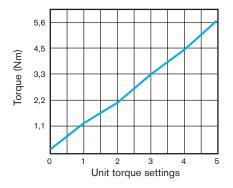
Magnetic clutches and brakes

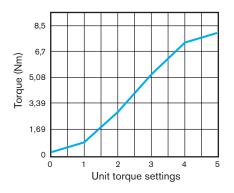

Torque Setting Charts

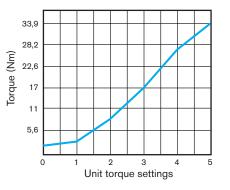
MB1




MC3/MB3


MC4/MB4


MC5/MB5


MC5.5/MB5.5

MC6/MB6

MC9/MB9

Applications

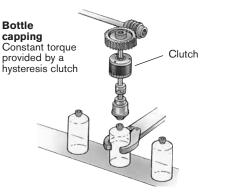
Unwind tension control

Brake mounted on shaft of unwinds spool or bobbin

Information required:

Full roll ϕ (m) = 0.15 ϕ core (m) = 0,1 Average tension (N) = 18Velocity (m/mn) = 30

How to size: Average radius = (Full roll ϕ + core \emptyset) / 4 = (0,15 + 0,1) / 4 = 0,06 m

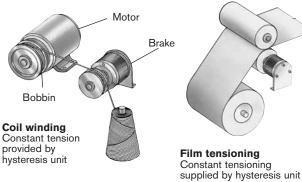

Average tension (Nm) = Average tension \cdot Average radius = $18 \cdot 0.06 = 1.08$ Nm

Check tension range:

Max. tension =Torque $\cdot 2 / \text{core } \emptyset =$ $1,08 \cdot 2 / 0,1 = 21,6 \text{ N}$ Min. tension = Torque \cdot 2 / full roll ø = $1,08 \cdot 2 / 0,15 = 14,4 \text{ N}$ Slip watts (watt) = (Max. tension \cdot velocity) / 60 = $(21.6 \cdot 30) / 60 = 10.8$ watts

Select MB4 Model

Cycling application


Information required: Slip = 500 tr/mnTorque = 0,90 Nm % slip time of total cycle time = 25% Select an **MC4 Mode**l from the specification chart.

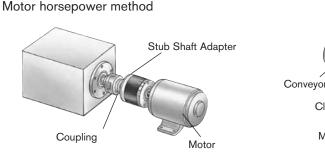
* Consult factory if peak slip watts are extremely high or if duration of slip period is in excess of 1 minute

How to size:

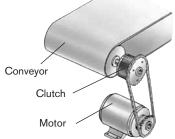
*Watts = $\frac{\text{Torque} \cdot \text{slip}}{9.55} \cdot 0,25 = \frac{500 \cdot 0,9}{9.55} \cdot 0,25 = 11,8 \text{ watts}$

Nip roll or pulley tension control

Information required:


Pulley or nip roll diameter = 0,1 m Tension = 26 NVelocity = 30 m/mn

How to size:

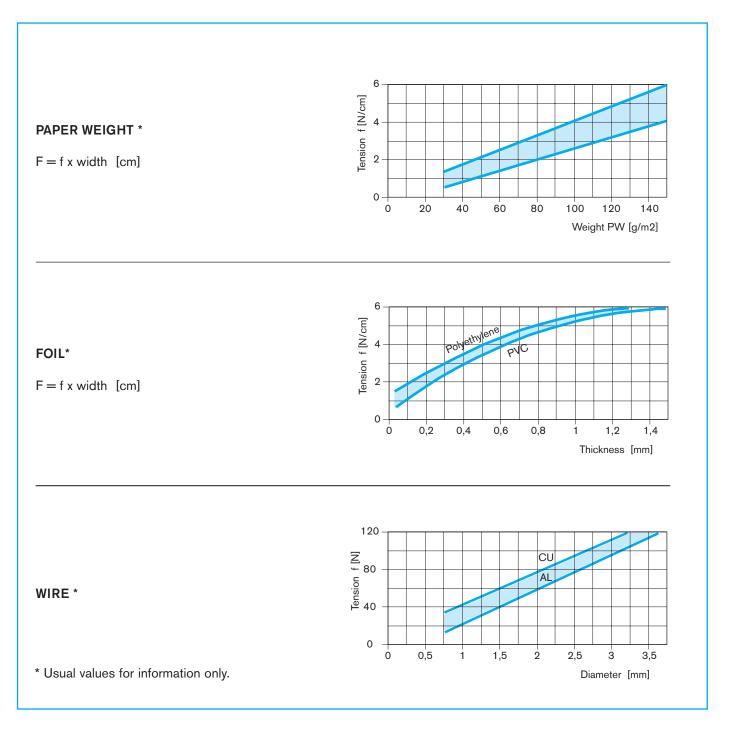

Torque = Tension $\cdot ø / 2 = 26 \cdot 0,1 / 2 = 1,3$ Nm Slip watts = (max. tension \cdot velocity) / 60 $= (26 \cdot 30) / 60 = 13$ watts

Select MB5 Model

Overload protection / Torque limiting / Soft start

Torque limiting Hysteresis clutch provides overload protection

Material handling Hysteresis clutch can provide overload protection and soft start


Information required: Power motor = 0,37 kw Speed motor = 1750 RPM

How to size: Torque = $9550 \cdot \text{kw} / \text{N} =$ 9550 · 0,37 / 1750 = 2 Nm

Select an MC5 Model from the specification chart.

Tension selection

The **WARNER ELECTRIC** experience enables us to offer a tension guide as shown below. For any special material not included in the chart below, please consult **WARNER ELECTRIC**. These values are usual values for information only, please check exact tension you need in your application.

MATERIAL DENSITY

	kg/m³
Paper	920
Paper board	1420
Alu foil	2720
Alu wire	2750
Copper	8550
PVC	400-1050

Data application form

To enable us to assist you in selecting the best product type and specification to ensure reliable and accurate tension control, please submit this **APPLICATION FORM.**

Company/Contact name:_	_ Tel	Fax	«		
Address:	e mail:				
City:	_ Date: Business:				
MAX. ROLL DIAMETER :		m	MASS:	kg	
MIN. ROLL DIAMETER :			m		
LINE SPEED :			m/mn		
BRAKE RATIO :		i = z2/z1	(Brake	on roll axis $i = 1$)	
FIRST CASE : unwind ten	ision known				
TENSION FORCE ON TO	DTAL WEB WIDTH :		N max.		N min.
SECOND CASE : unwind	l tension unknown				
If unknown precise type of	material :				
CURRENT VALUES USE					
ALUMINIUM FOIL :	00,7 N/cm / thickness micron	PAPER		PAPER	
CELLOPHANE :	0,05 N/cm/ thickness micron	10 gr/m ²	0,5 N/cm	130 gr/m²	3,1 N/cm
ACETATE :	0,035 N/cm / thickness micron	25 gr/m ²	0,7 N/cm	150 gr/m²	3,8 N/cm
MYLAR (POLYESTER) :	0,505 N/cm / thickness micron	40 gr/m ²	1 N/cm	200 gr/m ²	5,5 N/cm
POLYETHYLENE :	0,017 N/cm / thickness micron	60 gr/m ²	1,5 N/cm	250 gr/m²	7,7 N/cm
POLYPROPYLENE:	0,017 N/cm / thickness micron	80 gr/m ²	2 N/cm	330 gr/m²	11,5 N/cm
POLYSTIRENE :	0,06 N/cm /thickness micron	100 gr/m ²	2,5 N/cm	400 gr/m ²	14,8 N/cm
SARAN :	0,008 N/cm / thickness micron				
VINYL :	0,01 N/cm / thickness micron				
VALUE PER CENTIMETE	R WIDTH :		N/cm / micron		
		(Paper note 1)			
TENSION FORCE BY CE	ENTIMETER WIDTH :		N max.		N min.
ROLL WIDTH :			cm max.		cm min.
TOTAL FORCE ON ROLL	WIDTH :		N		N min.
MAX. ROLL SPEED :		RPM			
MIN. ROLL SPEED :		RPM			
THEORIC BRAKE TORO		Nm max.		Nm min.	
SLIDDING TORQUE :			Nm		
REQUIRED BRAKE TOR		Nm max.		Nm min.	
TOTAL HEAT DISSIPATIO		kW			
REQUIRED BRAKE SIZE	:				
NUMBER OF BRAKE PE	R ROLL :				
REQUIRED TENSION C	ONTROL REGULATION :				

Data application form

START - STOP :	
t1 = MACHINE STARTING TIME	secondes
t2 = ROLL ACCELERATING TIME	secondes
t3 = MACHINE DECCELARATING TIME	secondes
t4 = BRAKE ACCELARATING TIME	secondes
MB (see catalogue MTB-II or TB) or stopping brake applied	Nm
ACCELERATION TIME = $t2 = m \cdot v/120 \cdot F$	secondes
(force must accelerate the roll)	
Storage length = $I = v/120 \cdot (t2 - t1)$	metres
(if machine is accelerating faster : $t1 < t2$)	
If the dancer load is a mass,	Newtons
the tension force will increase = $F' = F \cdot v/118 \cdot t1$	
or	
I the dancer load is a mass,	Newtons
the tension force will increase $= F' = F \cdot v/118 \cdot t2$	

DECCELERATION :

1) Maintaining the web force, (warning : exact values if MB or t3 defined) :

Braking torque = MB = ((m \cdot D \cdot v/240 \cdot t4) + F \cdot D/2) \cdot 1/i	Nm	0 if MB not defined
Time t4 = $m \cdot D \cdot v/240 \cdot (MB \cdot i - F \cdot D/2)$	secondes	0 if MB not defined
If t4 > t3 necessary lenght = $I = v \cdot (t4-t3)/120$	metres	0 if t3 not defined

2) Uncontrolled emergency stop :

Emergency stopping time = $t = m \cdot D \cdot v/240 \cdot MB \cdot i$	secondes
Material length spillage = $I = v \cdot t/120$	metres

Warner Electric Facilities

North America

31 Industrial Park Road New Hartford, CT 06057 - USA 860-379-1252 *Electromagnetic Clutches and Brakes*

449 Gardner Street South Beloit, IL 61080 - USA 815-389-3771

4578 East Park 30 Drive Columbia City, IN 46725 - USA 260-244-6183 *Precision Electric Coils and*

Electromagnetic Clutches and Brakes

Customer Service 1-800-825-6544

For Application Support 1-800-825-9050

Europe

7, rue Champfleur, B.P. 20095 St Barthelemy d'Anjou - France +33 (0)2 41 21 24 24 *Electromagnetic Clutches and Brakes*

Customer Service +33 (0)2 41 21 24 76

For Application Support +33 (0) 2 41 21 24 24

Asia Pacific

Australia +61 2 9894 0133 China +86 21 5169-9255 Hong Kong +852 2615 9313 Singapore +65 6487 4464 Taiwan +886 2 2577 8156 Thailand +66 2322 5527

The Brands of Altra Industrial Motion

Couplings

Ameridrives www.ameridrives.com Bibby Turboflex

www.bibbyturboflex.com Guardian Couplings

www.guardiancouplings.com

www.huco.com

Lamiflex Couplings www.lamiflexcouplings.com Stromag

www.stromag.com

TB Wood's www.tbwoods.com

Geared Cam Limit Switches Stromag www.stromag.com

Electric Clutches & Brakes

Inertia Dynamics www.idicb.com Matrix www.matrix-international.com Stromag www.stromag.com

Warner Electric www.warnerelectric.com

Linear Products Warner Linear www.warnerlinear.com

Engineered Bearing Assemblies Kilian

www.kilianbearings.com

Heavy Duty Clutches & Brakes

Industrial Clutch www.indclutch.com Twiflex www.twiflex.com

Stromag www.stromag.com

Svendborg Brakes www.svendborg-brakes.com Wichita Clutch

www.wichitaclutch.com
Belted Drives

TB Wood's www.tbwoods.com

Gearing

Bauer Gear Motor www.bauergears.com Boston Gear

www.bostongear.com Delroyd Worm Gear

www.delroyd.com Nuttall Gear www.nuttallgear.com

Overrunning Clutches

Formsprag Clutch www.formsprag.com Marland Clutch

www.marland.com Stieber

www.stieberclutch.com

Neither the accuracy nor completeness of the information contained in this publication is guaranteed by the company and may be subject to change in its sole discretion. The operating and performance characteristics of these products may vary depending on the application, installation, operating conditions and environmental factors. The company's terms and conditions of sale can be viewed at http://www.altramotion.com/terms-and-conditions/sales-terms-and-conditions. These terms and conditions apply to any person who may buy, acquire or use a product referred to herein, including any person who buys from a licensed distributor of these branded products.

©2018 by Warner Electric LLC. All rights reserved. All trademarks in this publication are the sole and exclusive property of Warner Electric LLC or one of its affiliated companies.

