Tension Control Systems for Light, Medium, and Heavy-Duty Tensioning

Founded in 1927, Warner Electric has grown to become a global leader in the development of innovative electromagnetic clutch & brake solutions. Warner Electric engineers utilize the latest materials and manufacturing technologies to design long life, easy-to-use clutches and brakes that provide improved accuracy and repeatability. Warner Electric offers the broadest selection of industrial clutches, brakes, controls and web tension systems available from a single manufacturer.

Reliable Warner Electric components are used in a wide range of markets including material handling, packaging machinery, food & beverage, elevator & escalator, turf & garden, agriculture, off-highway, forklift, crane and motion control. Applications include conveyors, lift trucks, wrapping machines, servo motors, capping equipment, combines, balers, baggage handling systems, military vehicles, hoists and lawn mowers.

VISIT US ON THE WEB A WARNERELECTRIC.COM

Altra Motion

Altra is a leading global designer and producer of a wide range of electromechanical power transmission and motion control components and systems. Providing the essential control of equipment speed, torque, positioning, and other functions, Altra products can be used in nearly any machine, process or application involving motion. From engine braking systems for heavy duty trucks to precision motors embedded in medical robots to brakes used on offshore wind turbines, Altra has been serving customers around the world for decades.

Altra's leading brands include Ameridrives, Bauer Gear Motor, Bibby Turboflex, Boston Gear, Delevan, Delroyd Worm Gear, Deltran, Formsprag Clutch, Guardian Couplings, Huco, Jacobs Vehicle Systems, Kilian, Kollmorgen, Lamiflex Couplings, Marland Clutch, Matrix, Nuttall Gear, Portescap, Stieber, Stromag, Svendborg Brakes, TB Wood's, Thomson, Twiflex, Warner Electric and Wichita Clutch.

VISIT US ON THE WEB AT ALTRAMOTION.COM

Warner Electric Tension Control Systems

Warner Electric offers the most complete line of tensioning products available. Several different types of electric and pneumatic brakes designed specifically for tension applications range in torque ratings from 1 oz.in. through 1785 lb.ft. Controls vary from simple manual adjust models through sophisticated closed loop dancer systems.

Whether tensioning wire, film, foil, paper, kraft stock, or steel, Warner Electric offers the right tension system for your application. Let our tension specialists help you design the ideal system for your needs.

About This Catalog

This Warner Electric Master Tension Systems Catalog provides the designer with a complete design guide. Matching system component performance characteristics to your application is made easier through the extensive "Design Considerations & Selection" section and product comparison charts. In addition to selection information, the catalog includes product specifications, dimensions, a glossary of terms, and an application data form. It is the most complete tensioning catalog and design guide available.

Warner capabilities:

- Control technologies from manual operation to closed loop dancer control
- Multiple technologies Electric, pneumatic and electronic
- Full roll to core control
- Consistent tension, even during flying splices and emergency stops
- Web flutter eliminated to allow better registration control
- Reduction of material waste, downtime and maintenance
- Material flexibility Thin films, heavy mylar, rolled metals, newsprint, paperboard, laminate foils, wire
- Global distribution
- Local, professional service.

Tension Control Systems

Products for Controlling Tension – Overview2
Application Examples
System Configurations
Application Data Form
Design Considerations and Selection14
Material Specifications
Dancer Arm Sensors

Tension Controls

Selection Guide
Digital Series Systems40
Analog Controls
Dancer Controls
Power Supplies and Accessories
Dimensions/Enclosures

Tension Brakes and Clutches

Selection Guide
TB Series – Basic Tension Brakes
ATT Series – Advanced Technology
MTB – Modular Tension Brakes
Magnetic Brakes and Clutches – M Series86
Magnetic Particle Brakes and Clutches94
Pneumatic Brakes
Mistral Brakes

ModEvo Pneumatic Brakes

Brake Discs and Cooling							 .122
Options							 .123
Specifications							 .124
Dimensions							 .129

Sensors

Ultrasonic Sensors1	30
Bushing Part Numbers	33
Glossary	34
Conversion Factors1	35
Index	36

1

Products for Controlling Tension

Modular Control Units

BXCTRL Web Tension Control

The BXCTRL Web Tension Control is a solid state electronic control that receives a signal from dancer input sensors or two load cells (customer supplied). It integrates two separate Digital PID Controllers and two separate Open Loop controls.

- All set-up is done via SD card or computer
- When wired to dancer feedback, provides closed loop control with linear or auto compensation
- Easily integrated with BX2DRV driver for electric brake control

Modular Control Drivers

BX2DRV Modular Control Driver

Double channel driver provides output for 24 volt electric brakes when combined with BXCTRL

Analog Controls

TCS Series Analog/Manual Controls

The TCS-200 is a manual analog control for the Electro Disc Tensioning Brake. The control is a constant-current output type that uses a front panel or remote potentiometer to adjust the output. The TCS-200-1/-1H is a manual analog control for any 24 VDC tension brake. It can also accept a 0-10 VDC or 4-20mA analog input for adjusting the output. See page 46.

TCS-200

- Input: 24–30 VAC, 50/60 Hz
- Output: 0-270 mA continuous per magnet up to 12 electro disc magnets, adjustable 3.24 amps
- Torque adjust, brake on, run, brake off switch on front panel
- Remote torque adjust, roll follower inputs

TCS-200-1 Selectable Voltage

- Input: 115/230 VAC, 50/60 Hz
- Output: 0-24 VDC adjustable, 4.25 amps continuous
- Torque adjust, brake on/off, run switch
- Remote torque adjust, roll follower inputs

TCS-200-1H

- Input: 115/230 VAC, 50/60 Hz
- Output: 0-24 VDC adjustable, 5.8 amps continuous
- Torque adjust, brake on/off, run switch
- Remote torque adjust, roll follower, analog voltage or current option

TCS-220 Analog Tension Control

The TCS-220 operates an Electro Disc or other electromagnetic tension brake from an analog input (customer supplied) or the manual setting of the "Torque Adjust" dial on the control face. See page 48.

- Input: 48 VDC. 1.6 amps continuous, 6 amps intermittent. Analog inputs from roll follower or current loop.
- Output per magnet is 0–270 mA running, 270–500 mA stopping
- Cabinet mounting enclosure with exposed wiring or wall/shelf mounting enclosure with conduit entrance.

MCS-204 Analog Tension Control

The MCS-204 is a solid-state control designed for manual or analog input to operate one or two 24 VDC tension brakes. It is designed for use with the MCS-166 power supply. See page

47.

- Input 24–28 VDC @ 3 amps
- Operates from torque adjust control knob on front, remote potentiometer, roll follower, or current loop
- Panel mount with exposed wiring or wall/shelf mount enclosure with conduit entrance.

MCS 2000 DRV2 Modular Control Driver

Dual channel/ dual voltage driver provides output for 24 volt brakes with 48 volt E-stop braking requirements.

Products for Controlling Tension

Dancer Controls

MCS-203 Dancer Control

The MCS-203 automatically controls web tension through a dancer roll and sensor. It has 24 VDC output for use with TB, ATTB & ATTC, and Magnetic Particle clutches and brakes. See page 49.

- Operates two 24 VDC tension brakes in parallel when using dual MCS-166 power supplies
- Full P-I-D loop adjustment and system gain adjustment for optimum control.
- Available in panel mount or enclosed wall/ shelf mount enclosure.

TCS-210 Dancer Control

The TCS-210 automatically controls web tension through a dancer roll and position sensor. It outputs to an Electro Disc or other electromagnetic tension brake. See page 50.

- Input: 48 VDC, 1.6 amps continuous, 6 amps intermittent
- Output per magnet: 0–270 mA running, 270–500 mA stopping
- Cabinet mounting enclosure with exposed wiring or wall/shelf mounting enclosure with conduit entrance.

MCS-207 Pneumatic Dancer Control

This control provides automatic web tensioning using a dancer roll and pivot point sensor. See page 51.

- Operates most pneumatic clutches and brakes
- Automatic control for precise tensioning with minimal operator involvement
- Full P-I-D loop and system gain adjustments for optimum control
- Switch selectable output operates E to P transducers (0–10VDC) or I to P transducers (1–5mA, 4–20mA, 20–50mA) with zero and span adjustments.

TCS-310 Dancer Splicer Control

The TCS-310 is an automatic splicer control that operates two Electro Disc or other electromagnetic tension brakes, one brake controlling and one brake holding, or two tension brakes operating simultaneously. It can also be used as a dual brake control operating up to 24 MTB brake magnets. See page 52.

- Input: 48 VDC, 3.2 amps continuous, 12 amps intermittent
- Output per magnet is 0–270 mA running, 270–500 mA stopping, 0–90 mA holding
- Available with NEMA 4 enclosure

MCS-166 Power Supply Module

The MCS-166 Power Supply Module provides power for the MCS-203, MCS-204, MCS-207 control modules. See page 53.

- 120V/220V/240 VAC, 50/60 Hz
- 24 VDC, 1.5 amp output
- May be connected in parallel for increased current capacity.

TCS-167 Power Supply

The TCS-167 Power Supply provides power for either the TCS-210 or TCS-220 control modules. See page 53.

- 120V/240 VAC, 50/60 Hz operation, switch selectable
- Output: 9 VDC @ 1.5 amps and 48 VDC @ 1.6 amps continuous, 6 amps intermittent
- Internally fused for protection.
- Available in enclosed wall/shelf mount enclosure.

TCS-168 Power Supply

The TCS-168 Power Supply provides power to either the TCS-310 dancer tension controls. See page 53.

- Input switch selectable for 120 or 240 VAC, 50/60Hz
- Output 3.2 amps continuous, 12 amps intermittent

Products for Controlling Tension

Electric Brakes & Clutches

TB Series Basic Tension

Annular style 24 VDC tension brakes for light to medium duty unwind tension applications.

- Sizes: 1.7" to 15.25" diameter
- Torque range: 0.50 lb.ft. to 256 lb.ft.
- Thermal range: .019 HP to 1.09 HP

ATT Series Advanced Technology

Designed for intermediate web tension ranges.

- One piece clutch design for easy shaft mounting
- Brakes are flange mounted and the armature is the only rotating member
- Clutch torque ranges 7 to 41 lb.ft. Brake torque ranges from 8 to 62 lb.ft.
- Replaceable friction faces and armature rings.

MTB Series Modular Tension

Modular Tension Brakes (Electro-Disc) are modular caliper type electric brakes used for unwind tensioning. Torque is varied by disc diameter and by changing the number of magnets on the friction disc(s).

- 10", 13", 15" and 20" diameters
- Torque ranges to 750 lb.ft.
- Thermal capacities to 6 HP
- Brakes rebuildable by changing only friction pads and armature disks.

Magnet

Permanent magnet brakes and clutches are ideal for light tensioning applications, such as film and fine wires. They require no external power, have a wide range of torque adjustment, have no friction surfaces to wear, and offer chatter-free torque control even at very low speeds.

- Torque range from 1 oz.in. through 65 lb.in.
- Manual torque adjustment
- Constant torque with varying speeds.

Pneumatic Brakes & Clutches

Mistral

Mistral Pneumatic Tension Brakes' compact design meets the special needs of the corrugating industry.

- Fan cooled for longer life
- Three sizes for multiple applications
- Torque range: 1 lb.ft. to 442.5 lb.ft.
- Thermal capacity to 3.5 HP
- Three sizes from 9" to 16" diameter. Eases handling small roll ends.

Magnetic Particle

Self-contained magnetic particle clutches and brakes for a wide range of unwind/rewind applications offer smooth operation at very low speed and electronic control compatibility.

- Torque range from 2 lb.in. through 578 lb.ft.
- Shaft or flange mounting
- Fan cooled in largest sizes.

ModEvo

Modular Pneumatic

Tension Brake allows for a wide range of tension applications with the modular design. Actuator configuration with different friction material coefficients allow for much greater range capabilities.

- Torque range from 16 lb.ft. to 3180 lb.ft.
- Optional guards and cooling fan assemblies
- Thermal capacities to 18 HP
- Optional high speed armatures

Products for Controlling Tension

Sensing Devices

Ultrasonic Sensors

- Analog outputs with selectable
 0–10V 4–20mA
- Input voltage 20–30VDC
- Range control zero and span
- Short circuit protected
- 80" max. distance
- Response time 50 mSec

Pivot Point Sensors

The TCS-605-1 and TCS-605-5 pivot point sensors close the feed back loop to the tension control by sensing dancer roll position.

 TCS-605-1 is a single turn potentiometer with a resistance of 1KΩ for normal dancer operating ranges within 60° of arm rotation.

- \blacksquare TCS-605-2 is a single-turn potentiometer with a resistance of 5K Ω for normal dancer operating within a 60° range used with AC & DC drives.
- TCS-605-5 is a five-turn potentiometer with a resistance of $1K\Omega$ for festooned dancer systems, with a 300° rotational range.
- BTCS 620 is a European style pivot point sensor. Includes switch for signal inversion.

Application Examples

Dancer Control

The dancer control system consists of a power supply, dancer control, pivot point sensor, and controlling element, i.e., tension brake or clutch. Dancers provide the web tension while the control and controlling element stabilize dancer operation for unwind, intermediate zone or rewind tension.

Analog Control

Electronic Control

put.

The analog system consists of a control module, power supply, and a controlling element, i.e., tension brake or clutch. The analog controller provides output proportional to the input signal for use in unwind, intermediate zone or rewind tensioning.

Electronic control systems are very similar to analog control

systems with the exception of using an electronic sensing element such as an ultrasonic or photoelectric sensor. The sensor monitors diameter change in either the unwind or rewind rolls, and provides a corresponding change in out-

Application Examples

Dual Brake Unwind

Dual brake unwind incorporates modular tension brakes and an analog control system. The brakes retard the unwind roll, creating tension in the web. An external, customer-provided signal adjusts the output current to the brakes to maintain the proper tension. The dual channel controller controls each brake independently or simultaneously.

Single Roll Magnetic Particle Brake Unwind

The magnetic particle brake retards the unwind roll, maintaining tension provided by the dancer roll's weight. The pivot point sensor signals the controller to vary the current to the brake.

System Configurations

Technical Considerations – Tension Zones

L A tension zone in a web processing machine is defined as that area between which the web is captured, or isolated. Virtually any machine can be broken down into tension zones, and it is important to do so to properly address maintaining the tension required.

Simple machines, such as rewinders or inspection machines, may have only one zone (see Fig. 1). The primary goal here is to control tension so that the rewound package is accurately wound. Typically, the winder (A) would be a simple line speed motor drive, with tension controlled by a brake system at the unwind (D). The method of brake control (i.e.: open or closed loop) would be determined by the accuracy demands of the application. For simple diameter compensation, an ultrasonic sensor measuring the diameter of the roll can produce satisfactory results. Greater accuracy may require closed loop feedback, such as from a dancer or load cell.

II. More commonly, a machine will have driven nip rolls in the center, or processing section (see Fig. 2). A simple slitter/ rewinder is an example. In this case, there are two separate tension zones to deal with and the tension levels may be different in each zone. Different tension levels are possible because the web is captured at the driven nip rolls, thus creating separate and distinct unwind and rewind zones. The driven nip rolls (B) will typically be powered by a motor drive that establishes machine line speed. Processing tension will be controlled by a brake system at the unwind (D), and a clutch or motor drive will control the winder tension (A). Again, the method of control will be dictated by the accuracy of tension control required in each zone. If process tension levels can vary by 10% or greater, a simple open loop brake control system may suffice. More accurate control would require a closed loop system, such as dancer or load cell feedback. Likewise, in the winder zone, open loop control may be sufficiently accurate, or closed loop or taper tension control may be required.

III. More complex machines will usually have multiple intermediate zones in addition to the unwind and rewind zones (see Fig. 3). One of the intermediate zone drives will typically establish line speed, and the control of drive rolls for the other zones will relate to this drive. In some instances, a simple master/follower relationship with a speed differential ratio will provide the draw tension necessary in that zone (i.e. Fig. 3 – B & C). In other cases, this may be accomplished with closed loop (dancer or load cell) trim. The rewind (A) and unwind (D) would be handled as described in II. Multiple intermediate zones can become very complex, particularly if high degrees of accuracy are required. As a general rule of thumb, control of any zone should be accomplished at one end of the zone only. Control systems at both ends of the zone (for that zone) will generally result in instability of tension levels.

System Configurations

Reliable and accurate control for all system design layouts

Open loop tension control systems provide the least expensive manner to provide a degree of web tension control with the minimal amount of components. Open loop tension control can apply to unwind, intermediate, or rewind tension applications.

Although not as sophisticated as most closed loop tension control systems, a degree of controllability is achieved. Using open loop tension systems, one does sacrifice such things as web storage for acceleration, deceleration, and E-stop conditions. Tension variations during machine start or stop are common with this type of system.

The most common of the various tension systems are generally comprised of the controlled device; i.e., brake, clutch, etc., a simple controller or power supply, and a controlling element, i.e., a potentiometer or some type of analog sensor.

Because of system simplicity, tension is maintained for diameter compensation only in an unwind or rewind system, and no compensation is provided for acceleration, deceleration, E-stop or out of round roll conditions.

Open Loop System

Tension variations of 25% or more may be possible during acceleration or deceleration, and 10% or more during running due to out of round rolls or variations in the process machines.

These types of systems lend themselves nicely to applications where tension variations are not a concern, and hold back on a rewind role or scrap wind up is needed. Operator adjustments are usually required when material tensions or roll diameters are changed initially.

Typical Components

For the simplest of unwind systems, the following components might be used:

- Tension brake coupled to the unwind roll, i.e., ATTB, TB, magnetic particle, or MTB, or pneumatic brake
- Tension controller to provide control current or voltage to the brake, i.e., TCS-200-1, MCS-166/MCS-204, TCS-167/TCS-220, MCS-166
- Control, either the manually adjusted type with a control potentiometer, or through an external potentiometer coupled to a follower arm, or ultra-sonic or analog proximity sensor monitoring roll diameter.

Flying Splicer

Specially designed solid state splicer control holds the unused roll stationary while tensioning the operating roll. Dancer variation sensing and subsequent

neous for accurate tensioning during the splice, typically at less than 1% variation.

P-771-WE 9/19

System Configurations

Closed Loop System

Closed loop tension systems provide very precise and accurate tension control during steady state running conditions as well as acceleration, deceleration, and E-stop conditions. Because the material web is monitored constantly, either by load cells or from a dancer by position, changes are detected immediately and the controlled device is changed instantaneously to maintain accurate tension control.

The two most common methods of providing closed loop tension control are via load cells that monitor the force on the web directly or via dancers, which provide tension by the load imposed by the dancer roll and dancer position and velocity are monitored, usually by a precision potentiometer. Even the most minute changes are sensed and compensated for in a closed loop system.

Closed loop tension control systems require the least amount of operator involvement during running. Normally, the operator sets only the tension level required for the material being run, once the system has been properly set up and adjusted. Closed loop system controllers compensate for changes in roll diameter and conditions, acceleration, deceleration, and machine variations.

Although closed loop tension control systems offer the most advantageous method of providing web tension control, be it dancer or load cell, there are some limitations to each type of system. In dancer systems, more space is required in the machine to accommodate the dancer arm and rollers, and some method, preferably an air cylinder and regulator, is required for loading. Load cell systems, on the other hand, require less space for mounting, but storage is non-existent for acceleration or deceleration, and balancing of all

Typical System Components

The typical components of a closed loop tension system are:

- Tension brake coupled to the unwind roll; i.e., TB, MTB, magnetic particle, pneumatic brake
- Controller to provide proper signal to control device; i.e., BXCTRL/ BX2DRV,

MCS-166/MCS-203, TCS-167/TCS-210, MCS-166/MCS-207

 Controlling element dancer pivot point sensor potentiometer

machine rollers. Web contact is required because of load cells' high sensitivity.

In general, closed loop tension control is the preferred method in more complex machines where precise tension control is required due to process requirements, such as precise registration, multiple color printing or coating to an exact thickness.

Slitter/Rewinder

Slitter/rewinders process an unlimited number of materials including paper, wires, and foils. Modularity and broad torque capability make Warner Electric the ideal system for the complete range of slitter/rewinder tensioning requirements.

System Configurations

Dual Output and Splicer System

Dual output tension control systems, often referred to as splicer controls, offer the user a multitude of options for the way they may be set up and used. Dual output tension controls have the capability of operating both outputs simultaneously from a single input or operating each output alternately, one being controlled by the sensing input and the other in a holding mode. This allows the controls to be used on either zero speed or flying splicers.

Control types include both analog, such as the TCS-310 dancer control and digital such as the BXCTRL. Dual output controllers work like the single output controllers, except a few more features are included to provide switching between the output channels when operated as splicer controls.

The remote/analog splicer control provides an output proportional to the input. Typically, this is an open loop controller and does not compensate for acceleration, deceleration, or E-stops in the system. In addition, it provides no compensation for out of round roll conditions or variations associated with machine functions. This is the most basic type of controller and, in many cases, requires operator intervention to compensate for changing roll conditions.

The dancer splicer control, TCS-310, has additional features to provide automatic compensation for acceleration, deceleration, E-stop, out of round roll conditions and variations in the machine functions. A three-term control loop (P-I-D) is used to provide these functions. Set-up adjustments are provided to tune the system for optimum performance and, once set, requires no additional adjustment. With the dancer splicer system, operator

involvement during a run is eliminated, and precise tension control is achieved.

The digital tension controller, BXCTRL, allows the user a multitude of functions for both the type of inputs being used and the outputs for the controlled element. Because of its modularity, the user can tailor the BXCTRL system to specific application requirements. This system can be used as an open loop controller being controlled by a manual potentiometer, a roll follower pot, or some type of analog input sensor, i.e., ultrasonic or photoelectric.

The same controller can also be used with either a dancer or load cell and

an optional input module for closed loop control. By changing the parameters, this is easily accomplished without having to change to a different control.

Depending on application requirements and the control selected, the optimum system for machine function and control can be selected.

System Configurations

Typical Components for Splicer System

For Modular MTB Brakes Only

- Modular tension brake, MTB Series.
- Dual output tension controller, i.e., TCS-310 for dancer system, for remote/ analog system, for providing current to brake magnets.
- Power supply, TCS-168, to provide control and brake power.
- Controlling element, i.e., pivot point sensor for dancer system; external pot, remote signal, or analog sensor for remote/analog controller.

For other Brake/Clutch Systems

- Tension brake, clutch, or electronic motor drive, i.e., TB's, MTB's, ATT's, magnetic particles or pneumatic.
- Tension controllers, BXCTRL and appropriate output modules and/or input modules as necessary depending on system type.
- Control element, i.e., dancer potentiometer, load cells, tachometers, or analog sensors, depending on application requirements.

Bag Making Machines

The smooth, consistent tension provided by Warner Electric tension control systems eliminates most reject bags caused by uneven reel tension. On preprinted bags, Warner Electric tension brakes and control systems allow superior registration control to keep the printed area in its optimum position.

Business Forms Press

Unique control circuitry allows Warner Electric tensioning systems to maintain exact web tension for intermittent web processing operations. From the beginning of each roll to its core, operator adjustment is unnecessary, even at the highest production speeds.

Unwind Tension Application Data Form

	Warn	er Ele	ectri	c. Inc
--	------	--------	-------	--------

449 Gardner Street, South Beloit, Illinois 61080

Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: info@warnerelectric.com	_
---	---

Company Name:			_Date:
Address:			
City:		State:	Zip:
Contact:		Title:	
Phone:		Fax:	
E-mail:			
Type of Equipment:			
SYSTEM DATA:	Please check	those that apply.	
 A. Application New Existing If existing, what is currently be 	being used?	C. System Type Preference	
B. Controlling Element Load Cell Dancer Standard Festoon Analog Roll Follower Sensor Other		D. Web Motion	in inches seconds seconds
APPLICATION DATA:		Machine Parmeters	
*Web Width:	inches	G. Accel Time:	seconds
*Thickness:	inch, pts, mils	H. Decel Time:	seconds
		I. E-Stop Time:	seconds
Pounds/Inch:	pounds	* If additional application data is	nartinent please use second sheet

* If additional application data is pertinent, please use second sheet.

D. Max Diameter: ____

Total Tension:_____pounds

_____inches

B. Linear Speed: ______ft./min.

C. Core Diameter: _____inches

E. Full Roll Weight: _____pounds F. Core Weight: _____pounds

Intermediate Tension Application Data Form

Warner Electric, Inc.

449 Gardner Street, South Beloit, Illinois 61080

Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-ma	il: info@warnerelectric.com
--	-----------------------------

Company Name:		[Date:
Address:			
City:		State:	Zip:
Contact:		Title:	
Phone:		Fax:	
E-mail:			-
Type of Equipment:			
SYSTEM DATA:	Please check	those that apply.	
A. Application New Existing If existing, what is currently b	being used?	C. System Type Preference	
B. Controlling Element		D. Web Motion	in inches seconds seconds
		Nip Roll Information	
AT LIGATION DATA.		G. Nip Roll Matieral:	
A. Material:		H. Nip Roll Diameter:	inches
*Web Width:	inches	I. Nip Roll Width:	inches
*Thickness:	inch, pts, mils	J. Nip Roll Thickness:	inches
Circle appropriate measure		K. Nip Roll Weight:	pounds
*Tension: Pounds/Inch:	nounds	L. Number of Nip Rolls:	
Total Tension:	pounds	M. Nip Roll Contact Pressure:	pounds
B Linear Speed	poundo	Machine Parmeters	
C Core Diameter	inches	N. Accel Time:	seconds
D May Diameter	inches	H. Decel Time:	seconds
E Full Boll Weight		I. E-Stop Time:	seconds
E Coro Weight:			
	pounds	* If additional application data is pe	rtinent, please use second sheet.

X

Rewind Tension Application Data Form

Warner E	lectric.	Inc.
----------	----------	------

449 Gardner Street, South Beloit, Illinois 61080

|--|

Company Name:			Date:
Address:			
City:		State:	Zip:
Contact:		Title:	
Phone:		Fax:	
E-mail:			
Type of Equipment:			
SYSTEM DATA:	Please check	those that apply.	
 A. Application New Existing If existing, what is current 	ntly being used?	C. System Type Preference	
B. Controlling Element Load Cell Dancer Standard Festoon Analog Roll Follower Sensor Other		D. Web Motion	in inches seconds seconds
APPLICATION DATA:		Machine Parmeters	
A. Material:		G. Accel Time:	seconds
*Web Width:	inches	H. Decel Time:	seconds
*Thickness:	inch, pts, mils	I. E-Stop Time:	seconds

* If additional application data is pertinent, please use second sheet.

*Tension:

B. Linear Speed: ____

C. Core Diameter: ____

D. Max Diameter: ____

Circle appropriate measure

Pounds/Inch: ______ pounds Total Tension: ______ pounds

E. Full Roll Weight: _______poundsF. Core Weight: ______pounds

_____ft./min.

_____inches

_____ inches

Ý

Warner Electric, Inc.

449 Gardner Street, South Beloit, Illinois 61080

Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: info@warnerelectric.com

Со	mp	any	Na	me:																			 							C)ate	:										
Ad	dre	ss:_																					 		·····																	
Cit	y:																						 	_ 5	stat	te:_					Zip											
Co	Contact:											l itle	э:													-																
Phone: Fax:																																										
E-r	-mail:																																									
Тур	be (of E	quip	ome	nt:_																		 																			
Ad	diti	ion	al A	App	lica	atio	on I	Info	orr	na	tio	n																														
F					_			-			-	-			-						-		-	-			_				-				-		-		+	P	\square	\neg
þ	+	#	+	#	1		1				+			1	1						+		+	+			1	+			+				+	+			+	╞	Ħ	
+		+	-	+	-	$\left \right $	-		\vdash		-	+	$\left \right $	+	+	+		\mid	+	-	+	$\left \right $	+	+	\vdash	$\left \right $	+	-			-	$\left \right $		+	+			$\left \right $	+	+	$\left \right $	-
F		\square	-	\square	-						-				+						+			-				-			-				1				+	\square	\square	\exists
																																										_
																					_			_																\square		
t																																										
+	_	++	_		_			-		_	+	+		_	+	+			_	_	+		_	+			_	_	-		+		_	$\left \right $	+	_	-		+	+	\vdash	_
											1				1	1					1			1											1				1	╞		
+	_	++			-			+		-	+	+		-	+	+	-		-	+	+		-	+			+	-	-		+		_	$\left \right $	+	-	+		+	┢	\vdash	-
											1				1	1				1	1			1			1				1				1				+		\square	
+	-	+	-		-			+		-	+	+		+	+	+	-		-	+	+			+			+	-			+			$\left \right $	+	-	+		+	+	\vdash	-
																					-			_											_				_	\square	\square	
																																										_
+											_	-			_	_			_	_	+			_			_				_				_				_	\square	\square	_
+	_	++	_		-		_	-		_	+	+		_	+	+	-		_	+	+			+			+	_			+		_	$\left \right $	+	-	-		+	+	\vdash	_
																					1																					
+	-	++			-		_	-		-	+	+		-	+	+	-		-	+	+		-	+			+	-			+		_	$\left \right $	+	-	+		+	+	\vdash	-
+					-			-			-	-		-	-	-				-	+			+			+				-				+		-		-	+	\square	-
																																							1		\square	
+	-				-			+		-	+	+		-	+	+			-	+	+		-	+			+	-			+			+	+	-	+		+	+	\vdash	-
																																								\square	\square	
+	-	+	+	$\left \right $	+	$\left \right $	+	+	\vdash	+	+	+	\vdash	+	+	+	-		+	+	+	$\left \right $	+	+		\vdash	+	+			+	$\left \right $		$\left \right $	+	+	+	$\left \right $	+	+	$\left \right $	-
F		\square					_																	-											-				+	\square	\square	\exists
+				\square					\vdash												-																			+	\vdash	-
F		\square	-								-										-		1	-							-				-				-	\square	\square	\neg
+									\square												-																			+	\vdash	-
F																							-																	\square	\square	\neg
F								+	\vdash		-	+		-	+	-		\vdash	-	+	+		-	+	-	\vdash	+	-	+		+	\square		$\left \right $	-	+	+	\vdash	+	+	\vdash	-

Application Data Form Supplemental Information

Warner	Electric.	Inc
H unner		

449 Gardner Street, South Beloit, Illinois 61080

Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: info@warnerelectric.com

Company Name:	Date:
Address:	
City:	State: Zip:
Contact:	Title:
Phone:	Fax:
E-mail:	
Type of Equipment:	

Additional Application Information

X

Design Considerations and Selection

Brakes and clutches used for tensioning (constant slip) have one thing in common. Generally, heat dissipation capacity is the primary criteria for sizing, followed by torque capacity. Beyond this, each has unique sizing requirements that differ greatly. Information on particular Warner Electric tension brakes and clutches start on page 56.

Brakes (Unwinds or Payoffs)

Thermal Requirements

Thermal requirements for a brake equals web HP; which is

HP = Tension (lbs.) x Linear Speed (FPM) 33,000

This energy is constant throughout the unwinding process. Although energy is a function of torque and slip speed, slip speed is at its slowest when torque required is at its greatest (full roll), and slip speed is at its fastest when torque required is at its least (core). All that is needed, then to determine thermal capacity required in an unwind brake is tension and linear speed.

Caution should be taken, however, on machines that run more than one material at different line speeds. All combinations of tensions and line speeds should be checked to insure that brake sizing satisfies the most demanding condition (i.e. – the highest web HP).

Torque Requirements

There are generally three conditions under which a brake must supply sufficient torque: running torque, E-Stop (or emergency stop) torque and controlled stop torque (normal deceleration).

a. Running Torque

This is the torque required to maintain constant tension at any point in the roll being unwound. Since torque is force x distance, with force being tension and distance being roll radius, then torque must change as radius changes if tension is to remain constant. Moreover, the maximum running torque will be at full roll, since that has the largest radius.

b. E-Stop Torque, Web Break

This is the torque required to stop the roll in the event of a web break or a safety related machine stop. There are basically two types of stop conditions to be considered: web break where only the roll inertia stop time and RPM are major considerations, and controlled E-Stop where stopping is required due to some safety related issue, but web tension must be maintained. During web break E-Stop controlling tension is not a major concern, but getting the roll stopped in a specified time to minimize spillage. The time frame to stop may be a company specification or an OSHA requirement.

For a web break E-Stop, the torque required is a function of roll inertia, roll RPM and E-Stop time requirements.

$$T(torque) = \frac{WR^2 \times RPM}{308 \times t}$$

where T = Torque (lb.ft.)

t = E-Stop time requirement of machine

Since the roll inertia is greatest when the roll is full, this condition is normally used for calculating the worst-case E-Stop web break torque. RPM can be determined by dividing the linear speed by the roll diameter x pi (3.1416). E-Stop times as short as 2 seconds are not uncommon.

Note that if the control system is open loop (i.e. – ultra-sonic, manual, etc.), maximum E-Stop torque must be obtained by having the S-Stop switch on the machine turn the brake to full on, otherwise the torque available will only be running torque. In the closed loop mode (dancer or load cell), maximum E-Stop torque will automatically be applied.

c. E-Stop Torque, controlled

In a controlled stop, the brake must stop the roll during the time the machine stops, all the while maintaining tension on the unwind roll. This differs from web break E-Stop torque in that the brake must stop the inertia as well as continue to maintain running torque or tension.

$$T = \frac{WR^2 \times RPM}{308 \times t} + Maximum Running Torque$$

where T = Torque (lb.ft.) t = E-Stop time requirements of machine

It should be noted that controlled stops can only be accomplished in the closed loop mode, as feedback is required to maintain tension.

For the same stopping times, the controlled E-Stop will require more torque than the web break E-Stop, due to the additional load of maintaining tension. Controlled E-Stop torque is the worst case as the stop is the much faster than normal deceleration times.

E-Stop whether it be for controlled purposes or web break is generally a set function of the machine. Caution should be made in that the faster the E-Stop requirements, the more torque that is required of the system and the more stress that is placed on the components in the machine.

All categories must be investigated to determine the maximum torque capacity required for the application.

Design Considerations and Selection

Other Considerations

In some instances, it may be desirable to have a gear ratio from the roll shaft to the brake, with the brake on the higher speed shaft. In addition to providing a torque multiplication equal to the gear ratio, this also serves to reduce the effective inertia that the brake sees, as reflected roll inertia is reduced by the square of the ratio. Note, however, that with brakes that have a specified drag, or minimum torque, that drag torque is also multiplied, which could result in inability to address minimum running torque at or close to core diameter.

Also, it is important to realize that employing a gear ratio **DOES**. **NOT** reduce the heat dissipation requirement of the brake.

Another instance where a gear ratio may be needed is when any friction type brake is required to run at very low speeds, usually below 50 RPM. Although today's friction materials have been perfected to the point where static and dynamic coefficients or friction are very close, a certain amount of "sticktion" or stick slip phenomena may occur to the extent that precise control of tension may be compromised. Employing a speed-up gear ratio can make the brake operate at a more efficient speed.

Clutches (Rewinds or Winders)

Although motor drives are the more common choice for winders, clutches can be used quite successfully, and offer a more economical alternative. Typically, the input to the clutch will be a fixed RPM, and can be a take-off from the main machine drive, or an independent motor. RPM input should normally be a least 10% higher than the fastest output. To calculate this, determine the core RPM at fastest line speed, and increase this by at least 10%.

The output of the clutch will start at core RPM, and will gradually decrease as the diameter builds. As in the unwind brake, torque will vary in proportion to the diameter change, but unlike the brake, torque must increase as the diameter builds and the slip speed INCREASES. Slip speed increases because the fixed input RPM doesn't change, but the output RPM keeps decreasing as the roll diameter builds.

Energy dissipation capacity is the most critical sizing criteria in a winder clutch. Creation of heat is highest at full roll, since this is where slip speed AND torque are at their maximum. Maximum heat, or thermal HP, can be found by the following formulae:

 $HP = \frac{\text{Torque(lb.ft.)} @ \text{ full roll x Slip RPM @ full roll x 2 x Pi}}{33,000}$

After the clutch size is selected based on the above thermal calculation, clutch torque capacity should be checked by calculating maximum torque required, which is maximum tension times full roll radius.

Taper Tension

With some materials, taper tension may be required. This is a means by which tension is gradually decreased as the roll diameter builds, and is employed if there is a risk of crushing cores due to build-up of internal pressure within the roll, or if telescoping (slippage to one side) of the wraps might occur. This becomes a function of the control, as the rate of torque increase must be reduced as diameter increases.

In single zone machines, where the unwind brake controls winder tension, taper tension can be handled in a similar fashion.

Control of the clutch can be either open loop (manual adjust or diameter compensation) or closed loop (dancer or load cell), depending upon the degree of precision needed.

For detailed sizing and selection for unwind, intermediate and rewind applications, see sizing selection section on pages 16 through 32.

Design Considerations and Selection

Design considerations and selection can be broken down by the type of system being selected and the function it must perform. Sizing and application for an unwind will be different than that for a rewind. Also, depending on whether it will be for a clutch, or brake or for a drive, certain system parameters will be required.

Additionally, will the system require a simple remote/analog control, or will it require the option of a closed loop dancer or load cell controller? These factors must be taken into consideration when sizing the proper system.

No matter which type of system is being considered, certain application parameters are necessary to make the calculations for selecting the proper components. The selection process is straight forward if the necessary data has been obtained.

An application data sheet should be used for each application to insure the necessary data is available when doing the calculations. In many cases, three or four data sheets may be used for a particular machine. Although this may seem excessive, parameters will often vary between unwind, intermediate, or rewind sections of the machine.

Unwind Sizing Tension Brakes

Once the selection data has been obtained, sizing and calculations can be started. An application example is included for both a brake sizing and a drive sizing, showing the comparison of the two type systems.

Application Data

Material: Paper; 30 lb. Basis weight Tension: 36 lbs. max. Roll weight: 1,100 lb. avg. Web Width: 24 inches Linear Speed: 800 ft./min. Core diameter: 3.00 inches Max. roll diameter: 42.00 inches Machine Acceleration Time: 15 seconds Machine Deceleration Time: 15 seconds Machine E-Stop Time: 3.8 seconds

Note: Tension = Material Tension (PLI) X Web Width

Sizing for a Unwind Tension Brake System

1. Energy Rate

Energy Rate = Tension x Linear Speed

ER = 36 X 800

ER = 28,800 ft. lbs./minute

2. Thermal Horsepower

Thermal HP = $\frac{\text{Energy Rate}}{33,000}$

Note: Constant values in formulas are in bold.

HP = <u>28,800</u> **33,000**

HP = 0.873 HP

3. Minimum Roll Speed

 $\label{eq:Min. Roll Speed} \mbox{Min. Roll Speed} = \frac{\mbox{Linear Speed X 3.82}}{\mbox{Max. Roll Diameter (in.)}}$

Min. Roll Speed = $\frac{800 \times 3.82}{42}$

Min. Roll Speed = 72.76 RPM

4. Maximum Roll Speed

Max. Roll Speed = Linear Speed X **3.82** Core Diameter (in.)

Max. Roll Speed = $\frac{800 \times 3.82}{3}$

Max. Roll Speed = 1,018.67 RPM

5. Selection Speed

Selection Speed = (Max. Roll Speed – Minimum Roll Speed) **10**

+ Min Roll Speed

Selection Speed = (1,018.67 - 72.76) + 72.76

Selection Speed = $\underline{945.91} + 72.76$ **10**

Selection Speed = 94.591 + 72.76

Selection Speed = 167.35 RPM (Selection Speed)

Ref: Appropriate thermal curves on various catalog pages for possible brake selections (Selection Speed vs. Thermal)

6. Minimum Roll Torque

Minimum Roll Torque = Tension x Core Dia (in.)

24

Minimum Roll Torque = $36 \times \frac{3}{24}$

Minimum Roll Torque = 36×0.125

Minimum Roll Torque = 4.5 lb. ft.

7. Maximum Roll Torque

Maximum Roll Torque = Tension x Max. Roll Dia. (in.)

Maximum Roll Torque = $36 \times \frac{42}{24}$

Maximum Roll Torque = 36 x 1.75

Maximum Roll Torque = 63.00 lb. ft.

Note: Refer to appropriate Running Torque vs. Speed Curves

8. Full Roll Inertia, WR²

Full Roll Inertia = <u>Weight x Max. Dia. (in)</u>² **1152**

Full Roll Inertia = $1,100 \times (42)^2$ **1152**

Full Roll Inertia = 1,100 x 1,746 **1152**

Full Roll Inertia = 1,940,400

Full Roll Inertia = 1,684.38 lb. ft.²

9. Roll Deceleration Torque (Normal Controlled Stop)

Roll Decel Torque = Roll Inertia x Min. Roll Speed **308** x Machine Decel Time

+ Max. Running Torque

Roll Decel Torque = $\frac{122,555.49}{4,620}$ + 63

Roll Decel Torque = 26.53 + 63

Roll Decel Torque = 89.53 lb. ft.

10. Roll E-Stop Torque, Web Break

Roll E-Stop Torque,Roll Inertia x Min Roll SpeedWeb Break**308** x Machine E-Stop Time

Roll E-Stop Torque, = <u>1,684.38 x 72.76</u> Web Break **308** x 3.8

Roll E-Stop Torque, = 122,555.49Web Break 1,170.4

Roll E-Stop Torque, = 104.71 lb. ft. Web Break

• This formula can also be used to check tension during acceleration. Using acceleration time of 15 seconds, torque =

 $\frac{1,684.38 \times 72.76}{308 \times 15} = 26.5 \text{ lb. ft.}$

Dividing this torque by the radius give tension, so

Tension =
$$\underline{26.5} = 15.0$$
 lbs.
(42/**24**)

Since tension requirement is 36 lbs., acceleration is OK. If acceleration tension exceeds specified tension, a powered unwind should be considered or changing the time requirements.

Design Considerations and Selection

1	Ι.	Roll	E-Stop	Torque,	Control	led
---	----	------	--------	---------	---------	-----

Roll E-Stop Torque, = Roll Inertia x Min Roll Speed
Controlled 308 x Machine E-Stop Time
+ Max. Running Torque
Roll E-Stop Torque, = $1,684.38 \times 72.76 + 63$ Controlled 308 x 3.8
Roll E-Stop Torque, = $122,555.49 + 63$ Controlled 1,170.4
Roll E-Stop Torque, = 104.71 +63 Controlled
Roll E-Stop Torque, Controlled = 167.71 lb. ft.

Refer: Appropriate torque vs. speed curves for selection of possible brakes.

Final brake sizing is determined by thermal vs. selection speed and torque vs. speed for both running and E-Stop conditions. These specifications are found in the brake selection sections starting on page 56.

A cross check of minimum running torque to minimum torque of the unit selected must also be made. If the brake minimum torque value is above the minimum running torque value, then either gearing between the unwind roll and the brake will be required, or a larger core diameter or higher tension value must be used.

Note: Not all types of tension brakes in this catalog may be suited for a particular application. Selecting a brake that is not capable of handling the system requirements will result in premature wear out or failure.

If in doubt about sizing and selection, contact your local Warner Electric Distributor, Warner Sales Representative, or the factory.

Note: Constant values in formulas are in bold.

Design Considerations and Selection

Sizing for an Unwind Tension Drive System

Sizing for an unwind tension drive system is similar to a brake system; however, a few additional calculations are required to insure that the proper motor is selected. As before, the same system data is used to make the calculations and selection.

1. Energy Rate

Energy Rate = Tension x Linear Speed x $\begin{cases} Max. Dia.(in.) \\ Min. Dia (in.) \end{cases}$

Energy Rate = $36 \times 800 \times \frac{42}{3}$

Energy Rate = $36 \times 800 \times 14$

Energy Rate = 403, 200 ft. lbs./minute

2. Thermal Horsepower

Thermal Horsepower = Energy Rate 33,000

Thermal Horsepower = $\frac{403,200.00}{33,000}$

Thermal Horsepower = 12.22 HP

3. Minimum Roll Speed

Min. Roll Speed = <u>Linear Speed X 3.82</u> Max. Roll Diameter (in.)

Min. Roll Speed = $\frac{800 \times 3.82}{42}$

Min. Roll Speed = 72.76 RPM

4. Maximum Roll Speed

Max. Roll Speed = Linear Speed X **3.82** Core Diameter (in.)

Max. Roll Speed = $\frac{800 \times 3.82}{3}$

Max. Roll Speed = 1,018.67 RPM

5. Minimum Roll Torque

Minimum Roll Torque = Tension x Core Dia (in.)
24

Minimum Roll Torque = 36×3

x <u>3</u> 24

Minimum Roll Torque = 36×0.125

Minimum Roll Torque = 4.5 lb. ft.

6. Maximum Roll Torque

Maximum Roll Torque = Tension x Max. Roll Dia. (in.) 24

Maximum Roll Torque = $36 \times \frac{42}{24}$

Maximum Roll Torque = 36 x 1.75

Maximum Roll Torque = 63.00 lb. ft.

7. Full Roll Inertia, WR²

Full Roll Inertia = $\frac{\text{Weight x Max. Dia. (in)}^2}{1152}$

Full Roll Inertia = $\frac{1,100 \times (42)^2}{1152}$

Full Roll Inertia = $\frac{1,100 \times 1,746}{1152}$

Full Roll Inertia = <u>1,940,400</u> **1152**

Full Roll Inertia = 1,684.38 lb. ft.²

8. Acceleration Torque to Start Full Roll

Acceleration Torque = Inertia x Min Roll Speed **308** x Machine Accel Time

+ Max. Roll Torque

Acceleration Torque = $\frac{1,684.38 \times 72.76}{308 \times 15}$ + 63

Acceleration Torque = $\frac{122,555.49}{4,620.0}$ + 63

Acceleration Torque = 26.53 + 63.00

Acceleration Torque = 89.53 lb.ft.

9. Roll Deceleration Torque (Normal Controlled Stop)

Roll Decel Torque = Roll Inertia x Min. Roll Speed **308** x Machine Decel Time

+ Max. Roll Torque

Roll Decel Torque = $\frac{1,684.38 \times 72.76}{308 \times 15}$ + 63

Roll Decel Torque = $\frac{122,555.49}{4,620} + 63$

Roll Decel Torque = 26.53 + 63

Roll Decel Torque = 89.53 lb. ft.

10. Roll E-Stop Torque, Web Break

Roll E-Stop Torque, =Roll Inertia x Min Roll SpeedWeb Break**308** x Machine E-Stop Time

Roll E-Stop Torque, = $\frac{1,684.38 \times 72.76}{308 \times 3.8}$

Note: Constant values in formulas are in bold.

Roll E-Stop Torque, = $\frac{122,555.49}{1,170.4}$

Roll E-Stop Torque, = 104.71 lb. ft. Web Break

11. Roll E-Stop Torque, Controlled

Roll E-Stop Torque, =	Roll Inertia x Min Roll Speed
Controlled	308 x Machine E-Stop Time

+ Max. Running Torque

Roll E-Stop Torque, = $\frac{1,684.38 \times 72.76}{308 \times 3.8}$ + 63 Controlled

Roll E-Stop Torque, = $\frac{122,555.49}{1,170.4}$ + 63 Controlled

Roll E-Stop Torque, = 104.71 + 63 Controlled

Roll E-Stop Torque, Controlled = 167.71 lb. ft.

Not only does horsepower have to be calculated on thermal capacity, but horsepower must also be calculated based on both running and E-Stop torque requirements. In many cases, this will dictate a larger horsepower rating than was previously calculated for thermal capacity.

Generally, most AC and DC motors used with a drive, as is the case with most tension systems, produce 3 lb.ft. of torque over the entire speed range. The drives also provide increased current capacity for acceleration and deceleration for short time periods in the range or 150% of nominal ratings. This translates to a torque rating of 4.5 lb. ft. per horsepower.

12. Horsepower Based on Running Torque

Running Horsepower = Maximum Running Torque

3.0

Running Horsepower = $\underline{63.00}$ **3.00**

Running Horsepower = 21 HP

13. Horsepower Based on E-Stop Torque

Normally controlled E-Stop torque will be the worst-case conditions for calculating this horsepower requirement.

 $E-Stop Horsepower = \frac{E-Stop Torque, Controlled}{3.0 \times 1.5}$

E-Stop Horsepower = $\frac{167.71}{4.5}$

E-Stop Horsepower = 37.27 HP

As can be seen, the horsepower requirements for torque are much higher than those calculated for just thermal capacity. The motor and drive must be selected based on the largest of the three horsepower requirements.

Tension Control Systems Design Considerations and Selection

14. Motor HP Comparisons for Thermal and Torque

Thermal HP = 12.22 HP

Running Torque HP = 21.00 HP

Accel/Decel Torque HP = 19.89 HP

E-Stop Torque HP = 37.27

Based on the largest of the three requirements, in this case the E-Stop requirements of 37.27 HP; a 40 HP motor and drive system is required.

Note: Often a service factor will be added that will further increase the motor and drive size. This will generally depend on the severity of the application, environment, etc.

Service factors of 1.25 to 2.5 are typical for most applications.

Sizing and selection for different types of unwind systems, whether they be electric or pneumatic brakes, AC or DC drive systems, is basically the same. Though some differences may exist in the sizing and selection processes, most of the differences are revealed in the actual calculations, which are based on the type of system being considered. Acceleration, deceleration, and E-Stop requirements must be calculated for dancer and load cell type systems.

With analog or manual type systems, sizing process differences are not a factor, as the signal providing the control is a function of roll diameter only, and true machine function feedback is provided.

If deceleration and E-Stop capabilities are necessary to maintain accurate tension, then either a dancer or load cell type system must be considered. These are the only type systems that employ the full closed loop feedback needed for deceleration and E-Stop.

Control systems can be selected from the appropriate tables, page 38.

Note: In some cases a reducer or gearbox may be required between the motor or brake and the unwind roll spindle.

When sizing a reducer or gearbox, the speed is increased by the ratio and the torque is reduced by the ratio. Additionally, the efficiency of the reduction must be taken into account as this will slightly increase the required torque.

Note: Constant values in formulas are in bold.

Design Considerations and Selection

Intermediate Sizing

Intermediate sizing and selection typically involves a roll that retards or pulls the web to create tension.

A brake usually provides the retarding force, while a clutch driven by a constant speed motor or a variable AC or DC drive system provides pull force.

A few additional parameters are considered in addition to those used in sizing and selecting an unwind.

Application Data

Material: Paper; 30 lb. Basis weight Tension: 36 lbs. max. Roll weight: 1,100 lb. avg. Web Width: 24 inches Linear Speed: 800 ft./min. Core diameter: 3.00 inches Max. roll diameter: 42.00 inches Machine Acceleration Time: 15 seconds Machine Deceleration Time: 15 seconds Machine E-Stop Time: 3.8 seconds Location of Controlling Element: Nip Rolls, S-Wrap Roller Diameter: 6.00 inches Roller Width: 30.00 inches Roller Weight: 100 lbs. Nip Roll Pressure: 25 lbs.

Sizing an Intermediate Tension Brake System

1. Nip Roll Speed

Nip Roll Speed = Linear Speed x **3.82** Nip Roll Diameter

Nip Roll Speed = $\frac{800 \times 3.82}{6.00}$

Nip Roll Speed = 509.33 RPM

2. Tension Torque

Tension Torque = Tension x Nip Roll Diameter

24

Tension Torque = $36 \times \frac{6.00}{24}$

Tension Torque = 36×0.25

Tension Torque = 9.00 lb. ft.

3. Torque Due to Nip Roll Pressure

Nip Roll Torque = Nip Roll Force x <u>Nip Roll Diameter</u> **24**

24

Nip Roll Torque = 25 x 6.00

Nip Roll Torque = 25×0.25

Nip Roll Torque = 6.25 lb. ft.

Note: Constant values in formulas are in bold.

4. Torque Required for Tensioning

Total Torque = Tension Torque - Nip Roll Torque

Total Torque = 9.00 - 6.25

Total Torque = 2.75 lb. ft.

5. Energy Rate Required from Brake

Energy Rate = 2 x Pi X Nip Roll Speed x Nip Roll Torque

Energy Rate = 2 x 3.1415927 x 509.33 x 2.75

Energy Rate = 8,800.59 ft. lbs./minute

6. Thermal Horsepower

Thermal Horsepower = Energy Rate

33,000

Thermal Horsepower = 8,800.59 33,000

Thermal Horsepower = 0.267 HP

Initial brake sizing is based on thermal requirements and operating speeds from the appropriate speed vs. thermal curves for the brake type being considered. This information is found in the brake selection section starting on page 56.

7. Normal Deceleration Torque

Deceleration Torque = Nip Roll Inertia x Nip Roll Speed **308** x Machine Deceleration Time

+ Total Running Torque

WR² = <u>Nip Roll Diameter ² x Nip Roll Weight</u> **1152**

 $WR^2 = 6^2 \times 100$ **1152**

WR² = 3.125 lb.ft.²

Deceleration Torque = $3.125 \times 509.33 + 2.75$ **308** x 15

Deceleration Torque = $\frac{1591.66}{4620} + 2.75$

Deceleration Torque = 0.345 + 2.75

Deceleration Torque = 3.095 lb. ft.

8. E-Stop Torque

E-Stop Torque = <u>Nip Roll Inertia x Nip Roll Speed</u> **308** x Machine E-Stop Time

+ Total Running Torque

E-Stop Torque = $\frac{3.125 \times 509.33}{308 \times 3.8}$ + 2.75

E-Stop Torque = <u>1591.66</u> + 2.75 1170.4

E-Stop Torque = 1.36 + 2.75

E-Stop Torque = 4.11 lb. ft.

Final brake selection is based on running torque and E-Stop torque, based on torque vs. speed curves. The brake must have sufficient torque capability to handle the application. The appropriate curves for the brake type being considered should be consulted.

Note: Not all brake types will be suitable for a given application.

Sizing an Intermediate Tension Clutch System

Clutch sizing for an intermediate tension system is similar to brake sizing except the clutch input speed is recommended to be 50 to 100 RPM higher than the maximum output speed to assure proper controllability.

Using the same parameters as that for the brake sizing, sizing a clutch is as follows:

1. Nip Roll Speed

Nip Roll Speed = Linear Speed x **3.82** Nip Roll Diameter

Nip Roll Speed = $\frac{800 \times 3.82}{6.00}$

Nip Roll Speed = 509.33 RPM

2. Tension Torque

Tension Torque = Tension x Nip Roll Diameter

Tension Torque = $36 \times \frac{6.00}{24}$

Tension Torque = 36 x 0.25

Tension Torque = 9.00 lb. ft.

3. Torque Due to Nip Roll Pressure

Nip Roll Torque = Nip Roll Force x Nip Roll Diameter

24

Nip Roll Torque = 25×6.00 **24**

Nip Roll Torque = 25 x 0.25

Nip Roll Torque = 6.25 lb. ft.

4. Total Torque Required for Tensioning

Total Torque = Tension Torque + Nip Roll Torque

Total Torque = 9.00 + 6.25

Total Torque = 15.25 lb. ft.

Design Considerations and Selection

5 Clutch Input Speed

Clutch Input Speed = $\frac{k \times \text{Linear Speed}}{\text{Nip Roll Diameter}}$

k = 4.2 for 50 RPM Slip Difference

k = 4.57 for 100 RPM Slip Difference

Clutch Input Speed = $\frac{4.57 \times 800}{6}$

Clutch Input Speed = $\frac{3656}{6}$

Clutch Input Speed = 609.33 RPM

6. Energy Rate

Energy Rate = 2 x(Pi) π x Total Torque x Slip Speed Difference

Energy Rate = 2 x 3.1415927 x 15.25 x 100

Energy Rate = 9,581.86 ft. lbs./minute

7. Thermal Horsepower

Thermal Horsepower = Energy Rate **33,000**

Thermal Horsepower = $\frac{9,581.86}{33,000}$

Thermal Horsepower = 0.3 HP

8. Acceleration Torque

Acceleration Torque = Nip Roll Inertia x Nip Roll Speed **308** x Machine Acceleration Time

+ Total Running Torque

Acceleration Torque = $\frac{3.125 \times 509.33}{308 \times 15}$ + 15.25

Acceleration Torque = $\frac{1591.66}{4620}$ + 15.25

Acceleration Torque = 0.345 + 15.25

Acceleration Torque = 15.595 lb. ft.

Final clutch sizing is based on running torque and acceleration torque requirements that are based on slip RPM between input and output. The appropriate torque vs. speed curves should be consulted to insure that the clutch being considered has the necessary torque capacity for the application. See clutch information starting on page 60.

Not every model of clutch will be suitable for a given application.

Note: Constant values in formulas are in bold.

Design Considerations and Selection

Sizing an Intermediate Tension Drive System

Sizing a tension drive system for an intermediate tension zone is as easy as sizing a clutch or brake. Often a reducer or gear head will be used between the motor and nip rolls being controlled.

Using the same application parameters as that for the previous brake and clutch, sizing a drive is as follows:

1. Nip Roll Speed

Nip Roll Speed = Linear Speed x **3.82** Nip Roll Diameter

Nip Roll Speed = $\frac{800 \times 3.82}{6.00}$

Nip Roll Speed = 509.33 RPM

2. Tension Torque

Tension Torque = Tension x Nip Roll Diameter

Tension Torque = $36 \times \frac{6.00}{24}$

Tension Torque = 36×0.25

Tension Torque = 9.00 lb. ft.

3. Torque Due to Nip Roll Pressure

Nip Roll Torque = Nip Roll Force x Nip Roll Diameter

Nip Roll Torque = 25×6.00

Nip Roll Torque = 25×0.25

Nip Roll Torque = 6.25 lb. ft.

4. Total Torque Required for Tensioning

Total Torque = Tension Torque + Nip Roll Torque

Total Torque = 9.00 + 6.25

Total Torque = 15.25 lb. ft.

5. Energy Rate

Energy Rate = $2 \times (Pi) \pi \times Total Torque \times Nip Roll RPM$

Energy Rate = 2 x 3.1415927 x 15.25 x 509.33

Energy Rate = 48,803.3 ft. lbs./minute

6. Thermal Horsepower

Thermal Horsepower = $\frac{\text{Energy Rate}}{33,000}$

Thermal Horsepower = $\frac{48,803.3}{33,000}$

Note: Constant values in formulas are in bold.

Thermal Horsepower = 1.48 HP

Initial motor selection would be for a 1.5 HP. However, this must be checked to insure that the motor will have sufficient torque capacity to handle the application.

In this application, a ratio between the nip rolls and the motor would be advantageous as it will allow the motor to operate closer to its base speed of 1,750 RPM.

To determine the ratio for the reducer or gear head, assume the maximum motor speed is 1,750 RPM.

7. Reduction Ratio between Motor and Nip Rolls

Reduction Ratio = Motor Base Speed Nip Roll Speed

Reduction Ratio = $\frac{1750}{509.33}$

Reduction Ratio = 3.44 : 1

Based on this maximum ratio of 3.44 to 1, a 3:1 ratio would be selected for use between the motor and nip rolls. This would be a standard ratio and would be more readily available in comparison to a 3.44:1 ration.

8. Acceleration Torque

Acceleration Torque = Nip Roll Inertia x Nip Roll Speed **308** x Machine Acceleration Time

+ Total Running Torque

Acceleration Torque = $3.125 \times 509.33 + 15.25$ **308** x 15

Acceleration Torque = $\frac{1591.66}{4620}$ + 15.25

Acceleration Torque = 0.345 + 15.25

Acceleration Torque = 15.595 lb. ft.

9. Deceleration Torque

Deceleration Torque = Nip Roll Inertia x Nip Roll Speed **308** x Machine Deceleration Time

+ Total Running Torque

Deceleration Torque = $3.125 \times 509.33 + 15.25$ **308** x 15

Deceleration Torque = $\frac{1591.66}{4620}$ + 15.25

Deceleration Torque = 0.345 + 15.25

Deceleration Torque = 15.595 lb. ft.

10. E-Stop Torque

E-Stop Torque = Nip Roll Inertia x Nip Roll Speed **308** x Machine E-Stop Time + Total Running Torque E-Stop Torque = $3.125 \times 509.33 + 15.25$ **308** x 3.8 E-Stop Torque = 1591.66 + 15.25E-Stop Torque = 1.36 + 15.25E-Stop Torque = 16.61 lb. ft. ause a 3:1 reduction, is used between the pip rolls.

Because a 3:1 reduction is used between the nip rolls and motor, the reflected torque the motor must produce is reduced by this ratio.

11. Running Torque reflected to Motor with ratio

Motor Run Torque_(reflected) =
$$\frac{\text{Roll Running Torque}}{\text{Ratio}}$$
Efficiency of Reduction

Motor Run Torque_(reflected) = $\frac{15.25}{3.00}$ 0.85

Motor Run Torque_(reflected) = 5.98 lb. ft.

12. Acceleration Torque reflected to Motor with ratio

Motor Accel Torque_(reflected) = R<u>oll Acceleration Torque</u> Ratio Efficiency of Reduction

Motor Accel Torque_(reflected) = 15.595<u>3.00</u> 0.85

Motor Accel Torque_(reflected) = 6.12 lb. ft.

13. Deceleration Torque reflected to Motor with ratio

$$\begin{array}{l} \mbox{Motor Decel Torque}_{(reflected)} = & \begin{tabular}{c} \mbox{Roll Acceleration Torque} \\ \hline & \end{tabular} \\ \e$$

Motor Decel Torque_(reflected) = 6.12 lb. ft.

14. E-Stop Torque reflected to Motor with ratio

Motor E-Stop Torque

$$\frac{= \text{Roll E-Stop Torque}}{= \text{Ratio}}$$

$$\frac{= \text{Roll E-Stop Torque}}{= \text{Roll E-Stop Torque}} = 16.61$$

Motor E-Stop Torque_(reflected) = $\frac{16.61}{\frac{3.00}{0.85}}$

Motor E-Stop Torque_(reflected) = 6.514 lb. ft. **Note:** Constant values in formulas are in bold.

Tension Control Systems

Design Considerations and Selection

The final selection of the motor is based on the torque/HP capabilities. Motors will normally produce 3 lb.ft. of torque per HP over the speed range when used with either an AC or DC drive. Knowing this, horsepower requirements can be based on the various torque requirements and the motor selected accordingly. Additionally, most AC and DC drives provide a 150% overload capability for a limited time for acceleration, deceleration, and E-Stop conditions.

15. Motor HP based on Running Torque

Motor HP =
$$\frac{\text{Running Torque}}{3.00}$$

Motor HP = 5.98

Motor HP =
$$5.98$$

3.00

Motor HP = 1.99 HP

16. Motor HP based on Acceleration Torque

Motor HP =
$$\frac{6.12}{4.50}$$

Motor HP = 1.36 HP

17. Motor HP based on Deceleration Torque

Motor HP = Deceleration Torque **4.50**

Motor HP = $\frac{6.12}{4.50}$

Motor HP = 1.36 HP

18. Motor HP based on E-Stop Torque

Motor HP =
$$E-Stop Torque$$

4.50

 $Motor HP = \frac{6.514}{4.50}$

Motor HP = 1.45 HP

19. Motor HP Comparisons for Thermal and Torque

Thermal HP = 1.48 HP

Running Torque HP = 1.99 HP

Accel/Decel Torque HP = 1.36 HP

E-Stop Torque HP = 1.45

Design Considerations and Selection

20. Minimum Motor Horsepower Selection

Minimum Motor Horsepower Selected = 2.00 HP.

This would be the absolute minimum motor horsepower that would satisfy the requirements for this application.

Note: The 2 HP motor sized does not take into account any type of service factor for the application. Typically a service factor or 1.5 to 2.5 depending on the severity of the application, environment, hours per day operated, etc. are not unrealistic.

By adding a service factor to the final requirements, you can handle any additional friction, drag, etc. that may not be known and can be handled safely. Additionally, this will also help improve the life of the motor and system as well.

Using a service factor of 1.5 in this case, the motor HP would be $2 \times 1.5 = 3.00$ HP for final motor size selection. This would be much more preferred over using a 2 HP in this particular application.

Design Considerations and Selection

Rewind Sizing

Rewind tension systems are different from unwind tension systems only in that the material is being rewound on a roll. Many of the calculations are similar. However, rewind tension systems will use either a tension clutch or tension drive.

Selection data required for sizing a tension rewind system is similar to that of an unwind system. The application data form under the rewind section can be used for obtaining the proper data.

For purposes of our application example, the parameters used on the previous unwind and intermediate sections will be used.

Application Data

Material: Paper; 30 lb. Basis weight Tension: 36 lbs. max. Roll weight: 1,100 lb. avg. Web Width: 24 inches Linear Speed: 800 ft./min. Core diameter: 3.00 inches Max. roll diameter: 42.00 inches Machine Acceleration Time: 15 seconds Machine Deceleration Time: 15 seconds Machine E-Stop Time: 3.8 seconds Taper Tension Requirements: None

Note: Tension = Material Tension (PLI) X Web Width

Sizing for a Rewind Tension Clutch System

1. Energy Rate

Energy Rate = Tension x Linear Speed x

Max. Dia.(in.)

Energy Rate = $36 \times 800 \times 42$

Energy Rate = $36 \times 800 \times 14$

Energy Rate = 403, 200 ft. lbs./minute

2. Thermal Horsepower

Thermal Horsepower = $\frac{\text{Energy Rate}}{33,000}$

Thermal Horsepower = $\frac{403,200.00}{33,000}$

Thermal Horsepower = 12.22 HP

3. Minimum Roll Speed

Min. Roll Speed = Linear Speed X 3.82 Max. Roll Diameter (in.)

Min. Roll Speed = $\frac{800 \times 3.82}{42}$

Min. Roll Speed = 72.76 RPM

4. Maximum Roll Speed

Max. Roll Speed = $\frac{\text{Linear Speed X 3.82}}{\text{Core Diameter (in.)}}$

Max. Roll Speed = $\frac{800 \times 3.82}{3}$

Max. Roll Speed = 1,018.67 RPM

5. Clutch Input Speed

Clutch Input Speed = Maximum Roll Speed + Slip

Note: Slip Minimum = 50 RPM Slip Maximum = 100 RPM

Clutch Input Speed = 1018.67 + 50

Clutch Input Speed = 1068.67 RPM

Note: Clutch input speed must be at least 50 RPM greater than the maximum roll speed to provide a slip difference for controlling the output. If a locked rotor condition is used, the slip torque cannot be controlled, especially at core diameter.

6. Slip Speed at Core

Slip Speed at Core = Clutch Input Speed – Maximum Roll Speed

Slip Speed at Core = 1068.67 - 1018.67

Slip Speed at Core = 50 RPM

7. Slip Speed at Full Roll

Slip Speed at Full Roll = Clutch Input Speed - Minimum Roll Speed

Slip Speed at Full Roll = 1068.68 - 72.76

Slip Speed at Full Roll = 995.91 RPM

Thermal selection curves for the appropriate clutches should be checked to insure the clutch chosen can handle the thermal requirements at the worst case slip speed. See clutch information starting on page 60.

In this example, a slip speed of 995.91 RPM and a thermal capacity of 12.22 HP would be checked against the curves to insure that the clutch selected would have sufficient capacity to handle these requirements.

8. Minimum Torque at core

Minimum Roll Torque = Tension x Core Dia (in.)

24

Minimum Roll Torque = $36 \times \frac{3}{24}$

Minimum Roll Torque = 36 x 0.125

Minimum Roll Torque = 4.5 lb. ft.

Note: Constant values in formulas are in bold.

Design Considerations and Selection

9. Maximum Torque at full roll

Maximum Roll Torque = Tension x Max. Roll Dia. (in.)
24

Maximum Roll Torque = $36 \times \frac{42}{24}$

Maximum Roll Torque = 36×1.75

Maximum Roll Torque = 63.00 lb. ft

Once maximum running torque has been determined, refer the appropriate clutch torque curves to insure that the clutch has sufficient torque at the maximum slip speed. Clutch information starts on page 56.

If the clutch selected initially does not have sufficient torque at the maximum slip speed, the next larger size unit should be checked and selected.

Acceleration torque is the final step that must be considered when selecting a clutch for a rewind application. Acceleration torque for starting the roll is in addition to the running torque needed to maintain web tension.

Worst case for acceleration torque occurs when the roll is near its maximum roll diameter. If worst-case conditions can be met, there will be no problems when starting the roll at core diameter.

10. Acceleration Torque at Full Roll

$$\label{eq:Acceleration Torque} \begin{split} \text{Acceleration Torque} &= \frac{\text{Full Roll Inertia x Full Roll Speed}}{308 \text{ x Machine Acceleration Time}} \end{split}$$

+ Maximum Run Torque

Full Roll Inertia = $1,100 \times 42^2$ **1152**

Full Roll Inertia = 1,684.375 lb. ft.²

Acceleration Torque = $\frac{1,684.375 \times 72.76}{308 \times 15}$ + 63.00

Acceleration Torque = $\frac{122,555.13}{4620}$ + 63.00

Acceleration Torque = 26.527 + 63.00

Acceleration Torque = 89.53 lb. ft.

This torque is required at the maximum slip speed of the clutch to insure the roll can be accelerated while under tension.

As can be seen, the thermal requirements for a rewind clutch are much higher than those required for the same application in an unwind situation.

Generally if the roll build diameter exceeds a 3:1 range, it is more than likely that a clutch will not be sufficient for a rewind application.

Note: Constant values in formulas are in bold.

If in doubt during the sizing and selection, do not hesitate to contact your Warner Electric Distributor, Warner Electric Sales Representative, or the factory directly.

Sizing for a Rewind Tension Drive System

Sizing a motor for a rewind drive application is almost identical to that of an unwind system.

In this example, tension is constant to simplify sizing. In many applications, taper tension may be required due to the material being processed.

Max. Dia.(in.)

Min. Dia.(in.)

1. Energy Rate

Energy Rate = Tension x Linear Speed x

Energy Rate = $36 \times 800 \times 42$

Energy Rate = $36 \times 800 \times 14$

Energy Rate = 403, 200.00 ft. lbs./minute

2. Thermal Horsepower

Thermal Horsepower = Energy Rate **33,000**

Thermal Horsepower = $\frac{403,200.00}{33,000}$

Thermal Horsepower = 12.22 HP

3. Minimum Roll Speed

Min. Roll Speed = Linear Speed X **3.82** Max. Roll Diameter (in.)

Min. Roll Speed = $\frac{800 \times 3.82}{42}$

Min. Roll Speed = 72.76 RPM

4. Maximum Roll Speed

Max. Roll Speed = Linear Speed X **3.82** Core Diameter (in.)

Max. Roll Speed = 800×3.82

Max. Roll Speed = 1,018.67 RPM

5. Minimum Roll Torque

Minimum Roll Torque = Tension x Core Dia (in.)

24

Minimum Roll Torque = 36×3

Minimum Roll Torque = 36×0.125

Minimum Roll Torque = 4.5 lb. ft.

Design Considerations and Selection

6. Maximum Roll Torque

Maximum Roll Torque = Tension x Max. Roll Dia. (in.) 24

Maximum Roll Torque = 36×42

Maximum Roll Torque = 36×1.75

Maximum Roll Torque = 63.00 lb. ft.

7. Full Roll Inertia, WR²

Full Roll Inertia = Weight x Max. Dia. (in)² 1152

Full Roll Inertia = $1,100 \times (42)^2$ **1152**

Full Roll Inertia = 1,100 x 1,746 **1152**

Full Roll Inertia = 1,940,400

Full Roll Inertia = 1,684.38 lb. ft.²

8. Acceleration Torque to Start Full Roll

Acceleration Torque = Inertia x Min Roll Speed **308** x Machine Accel Time

+ Max. Roll Torque

Acceleration Torque = $\frac{1,684.38 \times 72.76}{308 \times 15}$ + 63

Acceleration Torque = $\frac{122,555.49}{4,620.0}$ + 63

Acceleration Torque = 26.53 + 63.00

Acceleration Torque = 89.53 lb.ft.

9. Roll Deceleration Torque (Normal Controlled Stop)

Roll Decel Torque = Roll Inertia x Min. Roll Speed **308** x Machine Decel Time

+ Max. Running Torque

Roll Decel Torque =
$$\frac{1,684.38 \times 72.76}{308 \times 15}$$
 + 63

Roll Decel Torque = $\frac{122,555.49}{4,620} + 63$

Roll Decel Torque = 26.53 + 63

Note: Constant values in formulas are in bold.

10. Roll E-Stop Torque, Controlled

Roll E-Stop Torque,
Controlled= Roll Inertia x Min Roll Speed
308 x Machine E-Stop Time
+ Max. Running TorqueRoll E-Stop Torque,
Controlled $1,684.38 \times 72.76$ + 63
308 x 3.8Roll E-Stop Torque,
Controlled122,555.49 + 63
1,170.4Roll E-Stop Torque,
Controlled104.71 + 63
ControlledRoll E-Stop Torque,
Controlled104.71 + 63
ControlledRoll E-Stop Torque,
Controlled104.71 + 63
ControlledRoll E-Stop Torque,
Controlled104.71 + 63
Controlled

11. Horsepower Based on Running Torque

Running Horsepower = <u>Maximum Running Torque</u>

3.0

Running Horsepower = $\frac{63.00}{3.00}$

Running Horsepower = 21 HP

12. Motor HP based on Acceleration Torque

Motor HP = $\frac{\text{Acceleration Torque}}{4.50}$ Motor HP = $\frac{89.53}{4.50}$

Motor HP = 19.89 HP

13. Motor HP based on Deceleration Torque

Motor HP = <u>Deceleration Torque</u> **4.50**

Motor HP = $\frac{89.53}{4.50}$

Motor HP = 19.89 HP

14. Horsepower Based on E-Stop Torque

Normally controlled E-Stop torque will be the worst-case conditions for calculating this horsepower requirement.

E-Stop Horsepower = $\underline{\text{E-Stop Torque, Controlled}}$ **3.0** x 1.5

E-Stop Horsepower =
$$\frac{167.71}{4.5}$$

E-Stop Horsepower = 37.27 HP

15. Motor HP Comparisons for Thermal and Torque

Thermal HP = 12.22 HP

Running Torque HP = 21.00 HP

Accel/Decel Torque HP = 19.89 HP

E-Stop Torque HP = 37.27

Design Considerations and Selection

Not only must the motor selected be able to handle the heat dissipation of the application, but it also must be capable of providing the necessary torque to maintain proper tension.

Typically an AC or DC motor controlled by a frequency and/ or vector drive, or a regenerative DC drive produces 3 lb.ft. of torque per horsepower over the rated motor speed range.

The HP ratings based on the largest of the 4 conditions of step 15 would be the HP rating selected for the application. In this case, since a 37.27 HP motor is not a standard, the next larger size motor would be selected. This application would require a 40 HP motor and drive system.

In many applications a reduction or gear head would be used between the motor and rewind roll. Often this will reduce the HP rating of the required motor as a torque advantage is realized with the reducer or gear head. It should be noted that the maximum ratio that can be used should never exceed a 30:1 ratio or problems will result at the low-end torque range of the motor possibly.

In the example above, no service factor was taken into account and in many cases a service factor of 1.25 to 2.5 may be considered. This would take into account any unknown friction, bearing drag, etc. in the system.

In this example if a service factor of 1.25 is used, then the motor HP and drive system would be 50 HP. By going to the larger system, motor life and trouble free operation would be realized.

For additional assistance in sizing and selecting a tension rewind drive system contact your Warner Electric Authorized Distributor, Warner Electric Sales Representative, or the factory technical support.

Design Considerations and Selection

Calculating Web Tensions

For sizing any clutch, brake or drive tension system, tension must be known to perform the calculations. In many cases, the tension ranges for the materials being processed will be known. However, tensions may have to be calculated and/or even estimated for a given application.

To determine an estimated tension value when the actual value is unknown, certain parameters must be known. These are:

- 1. Material being processed
- 2. Web width of material, minimum and maximum
- 3. Paper weights, material thickness or gauge, or wire diameter, or paperboard points

Approximate Tension value = Web Width x Approximate Material Tension

Note: When dealing with film and foil materials, tension values given are normally pounds per mil per inch of material width.

Approximate Tension Values

The values shown are typically for unwind and intermediate tension systems. Values for rewind systems are normally 1.5 to 2 times higher in many cases, especially when dealing with slitter-rewinders.

Tension Value Charts

Materi	al	Tension Pounds per inch of web width						
Paper	(Based on 3,000 sq. ft. / ream)							
15 lb.		0.50 lb./in.						
20 lb.		0.67 lb./in.						
30 lb.		1.00 lb./in.						
40 lb.		1.33 lb./in.						
50 lb.		1.67 lb./in.						
60 lb.		2.00 lb./in.						
70 lb.		2.33 lb./in.						
80 lb.		2.67 lb./in.						
100 lb.		3.33 lb./in.						
120 lb.		4.00 lb./in.						
140 lb.		4.67 lb./in.						
160 lb.		5.33 lb./in.						
180 lb.		6.00 lb./in.						
200 lb.		6.67 lb./in.						

Paperboard (Based on points thickness)

8 pt.	3.00 lb./in.				
10 pt.	3.75 lb./in.				
12 pt.	4.75 lb./in.				
15 pt.	5.63 lb./in.				
20 pt.	6.00 lb./in.				
25 pt.	9.38 lb./in.				
30 pt.	11.25 lb./in.				
35 pt.	13.13 lb./in.				
40 pt.	15.00 lb./in.				
45 pt.	16.88 lb./in.				
50 pt.	18.75 lb./in.				
Note: Typical tension is 0.375 lbs./point					

Material	Tension
material	Pounds per mil
Filme and Foile	
Aluminum Foil	0.5 to 1.5 lbs./mil./in.
	Typically 1.0 lb./mil./in.
Acetate	0.50 lbs./mil./inch
Cellophane	0.50 to 1.0 lbs./mil./in. Typically 0.75 lbs./mil./in.
Polyester	0.50 to 1.0 lbs./mil./in. Typically 0.75 lbs./mil./in.
Polyethylene	0.25 to 0.3 lbs./mil./in.
Polypropylene (Non-orientated)	0.25 to 0.3 lbs./mil./in.
Propylene (Oriented)	0.5 lbs./mil./in.
Polystyrene	1.0 lbs./mil./in.
Saran	0.05 to 0.2 lbs./mil./in. Typically o.1 lb./mil./in.
Vinyl	0.05 to 0.2 lbs./mil./in. Typically 0.1 lb./mil./in.
Mylar	0.5 lbs./mil./in.
Oriented Propylene	0.5 lbs./mil./in.
Metals and Steels	
Beryllium Copper	8.0 lbs./mil./in.
Titanium, Tungsten, High	
Carbon Steel, and Stainless Steel	8.0 lbs./mil./in.

Carbon Steel, and Stainless Steel	8.0 lbs./mil./in.
Low Carbon Steels	See Chart
Non-Ferrous Metals	See Chart

Thickness	Low Carbon Steels (lbs./in. width)	Non-Ferrous Metals (Ibs./in. width)
0.005	30.00	22.00
0.010	65.00	42.00
0.015	70.00	59.00
0.020	85.00	70.00
0.025	105.00	80.00
0.030	120.00	90.00
0.035	134.00	98.00
0.040	145.00	105.00
0.045	158.00	110.00
0.050	170.00	115.00
0.055	180.00	120.00
0.060	190.00	125.00
0.065	195.00	130.00
0.070	202.00	135.00
0.075	206.00	139.00
0.080	210.00	142.00
0.085	212.00	146.00
0.090	215.00	150.00
0.095	217.00	152.00
0.100	219.00	155.00
0.110	220.00	
0.120	220.00	
0.130	218.00	
0.140	214.00	
0.150	210.00	

Note: These values are for actual tensions; typically they are run at less.

Design Considerations and Selection

Wire Tensions

AWG Wire Size	Aluminum Wire	Copper Wire	
	Tension		
	Pounds per		
	stra	nd of wire	
30 AWG	0.35	1.2	
28 AWG	0.69	2.2	
26 AWG	1.10	3.3	
24 AWG	1.75	5.0	
22 AWG	2.77	7.5	
20 AWG	4.42	11.5	
18 AWG	7.00	17.0	
16 AWG	11.20	26.0	
14 AWG	17.80	38.0	
12 AWG	28.30	56.5	
10 AWG	44.80	81.0	
8 AWG	71.40	110.0	
6 AWG	113.00	175.0	
4 AWG	180.00	278.0	

Note: In many cases, only hold back is required rather than full tensioning where there is a permanent set in the material. The actual tension values times a factor of 0.25 to 0.50 is sufficient to provide the necessary holdback.

Material Densities

When the weights of the unwind or rewind rolls are not known, they can be estimated by knowing the roll width, core diameter, maximum roll diameter, material type and material density.

Roll weights can be obtained by looking at the process tracking tags found on most rolls. When this is not possible, an estimated weight can be calculated.

Roll weight must be known to calculate roll inertia for acceleration, deceleration, and E-stop requirements for system selection.

Roll weight	= Roll Volume x Material Density
-------------	----------------------------------

Volume = Max Roll Diameter ² x Roll Width x 0.00045

Note: Maximum Roll Diameter and Roll Width are in inches.

Application Example

Determine the estimated roll weight of a 42 inch diameter roll, 24 inches wide, paper.

Volume = $42^2 \times 24 \times 0.00045$

= 19.05 cubic feet

Weight = Volume x Density

= 19.05 x 57 (Density of Paper)

Note: This does not take into account the core spindle shaft weight. If an extremely accurate weight of all components is necessary, core spindle shaft weight can be calculated separately and added to the roll weight.

Material Densities

Material	Typical Density (lbs./ft. ³)
Papers, Films, and Foils	
Paper	57.00-75.00
Paperboard	88.00
Acetate	81.50
Aluminum Foil	45.00
Cellophane	57.00
Polyester	78.00
Polyethylene	57.50
Polypropylene	56.00
Polystyrene	66.00
Vinyl	86.00
Saran	107.50
Mylar	112.00
Metals	
Aluminum	165.00
Beryllium Copper	514.00
Copper	542.00-576.00
Tin	407.50
Titanium	281.00
Tungsten	1,224.00
Steel (typical)	483.00-495.00
Design Considerations and Selection

Additional Design Considerations

Considerations additional to the sizing process for the controlling device (brakes or clutches) are discussed below.

Torque

Although torque calculations are similar for unwind, intermediate and rewind tension applications, both minimum and maximum torque values of the controlling device must be considered for the application to be successful.

Minimum torque is the amount of force the controlling device must apply to maintain constant tension in the web. If the minimum torque exceeds the minimum torque necessary to maintain web tension, the system cannot control properly, web tension will increase, and waste may result.

Maximum torque is the force provided by the controlling device to maintain proper web tension in worst-case conditions. If maximum torque is less than that required by the application, tension will be less than desirable and may result in poor process.

E-Stop torque is the force the controlling device can apply during machine E-Stop conditions. This E-Stop torque depends on the type of controlling device used and the control system employed. Not all control systems or controlling devices, i.e., brakes, clutches, etc., have E-Stop capabilities. If E-Stop requirements are mandated by the application, then both the controller system and controlling device must have the capabilities to provide this.

If the controlling device cannot produce the necessary torque, then web spillage will occur and damage to machinery may result.

The controlling device must be large enough to cope with all application torque requirements. Even though most brakes and clutches have both static and dynamic torque capabilities, dynamic torque is more important than static torque in tension applications.

Heat Dissipation

When a clutch, brake, or motor operates in a slipping mode or the motor is generating torque, heat is built up as a result of the mechanical energy being converted to thermal energy. The controlling device must be able to dissipate this (heat) energy. If it doesn't, it will fail, either electrically, mechanically, or both.

The heat dissipation capacity of the controlling device must always exceed the heat produced by the application. Environmental considerations must also be analyzed to insure proper operation. High ambient temperature, enclosures surrounding the controlling device limiting the airflow, or marginal heat dissipation capacity have to be considered.

Some controlling devices may need additional cooling with fans or blowers to increase air flow.

The controlling device must be selected properly to handle the application's heat dissipation. This is probably one of the most critical factors in sizing and selection.

Speed

Brakes, clutches, and motors have minimum and maximum speed ranges. Applications must always be checked to insure that the requirements fall within the capabilities of the controlling device.

Failing to operate the controlling devices within their specifications may result in the application failing to meet the specified requirements; failure of the components mechanically and electrically, or even may result in serious damage or injury.

Selection RPM is used to properly size a unit so that over sizing is minimized and an optimum system can be specified.

Inertia

By definition, inertia is that property of a body that makes it continue in the state of motion or rest in which it may be placed until acted upon by some force.

Inertia is an important factor in tensioning applications because it has an effect in the sizing of the controlling device during acceleration, deceleration, and E-Stop conditions.

Failure to consider inertia during the calculations can definitely result in a system being undersized and unable to provide optimum performance. This may result in instability at start up and overrunning during deceleration and stopping. The end result in all cased will be poor product quality and, usually, excessive scrap.

With the exception of intermediate tension applications and analog control systems, inertias are constantly changing in unwind and rewind applications. Worst-case inertia calculations are normally used for sizing and selecting purposes.

Charts

Charts are provided for all clutches and brakes included in the catalog. They provide a means of selecting the correct controlling device for a given application. Performance charts and product specifications for brakes and clutches start on page 56.

The charts provide thermal vs. selection speed data, the means of selecting the unit based on thermal requirements.

Never select a controlling device whose thermal limits are near or equal to those of the application. The next larger size unit should always be considered or the factory should be consulted for additional options.

Selection charts are also provided for running torque vs. speed and E-Stop torque vs. speed. These charts provide a means of checking the preliminary unit selection based on thermal requirements and torques.

The appropriate charts must be used in the sizing and selection process.

Design Considerations and Selection

Additional Calculations

Additional calculations can be made to determine roll stop time, web payout during stop, and web storage requirements. These become important when using a dancer or load cell control system to ensure optimum performance and to insure the controlling element selected will do the job.

1. Normal Roll Deceleration Stop Time

Normal Roll Decel Stop time =

WR² x Minimum Roll RPM **308** x [Brake Dynamic Torque available – Maximum Running Torque (Full Roll)]

2. Roll E-Stop Time

Roll E-Stop Time =

WR² x Minimum Roll RPM **308** x [Brake Dynamic Torque available – E-Stop Torque Required]

Determine web payout during normal deceleration stop and E-Stop conditions to determine the amount of web spillage. The calculations that follow may signal a need to upsize the brake or improve the dancer design.

1. Determining Web Payout during normal deceleration

Web Payout during normal deceleration =

Linear Speed (FPM) x Roll Stop time (deceleration)
120

2. Determining Web Payout during E-Stop

Web Payout during E-Stop =

Linear Speed (FPM) x Roll E-Stop time
120

3. Machine Web Draw during normal deceleration

Machine Web Draw during deceleration =

Linear Speed (FPM) x Machine Decel time 120

4. Machine Web Draw during E-Stop

Machine Web Draw during E-Stop =

Linear Speed (FPM) x Machine E-Stop time
120

Once these values are calculated, web spillage can be determined and the brake selected will be found adequate or its size will have to be increased. Another alternative is dancer design improvements. See dancer design section for calculations and suggestions.

Web Spillage = Web Payout of Roll – Machine Web Draw

This should be calculated for both normal deceleration and E-Stop calculations.

Note: Constant values in formulas are in bold.

Note: If the numbers calculated are negative, then no payout or spillage will occur.

Often during E-Stop, web spillage will be evident from the above calculations. If this is not a concern and the brake selected can handle the heat dissipation and torque requirements for running and deceleration, the controlling element has been correctly selected.

It may be necessary with E-Stop requirements, to repeat calculations for torque and brake selection until a controlling element can be selected that will match all the parameters.

Selection Conclusions

No matter which type of tension system is selected, unwind, intermediate, or rewind, this is intended as a general sizing selection guide that will probably cover the vast majority of applications. Some instances will surely be encountered where the sizing and selection covered in the previous pages may not apply. In these cases, your local Warner Electric Representative can provide the necessary guidance and assistance to correctly size and select a tension control system.

The sizing and selection process is quite straightforward, although some work is involved. In summary, sizing and selection can be broken down into three simple steps:

- 1. Selection of the controlling device, i.e., Brake or clutch
- 2. Controller, Power Supply, etc., i.e., Remote/Analog, Dancer, Load Cell, or Splicer
- 3. Input Sensing Element, i.e., Dancer Pot, Load Cell, Analog sensor

With the wide variety of tension products available, Warner Electric can offer complete tension packages for almost any application encountered. Because of its vast experience and knowledgeable professionals, Warner Electric can solve your tensioning needs.

Web Storage

A load cell does not provide material storage for machine acceleration. As the machine draws material during the acceleration period, it is pulling against the inertia of the unwind roll. If the roll is large, the acceleration rate is high, and the material is light, the web may break. Therefore, it may be necessary to provide storage in the web path to release material as the roll comes up to speed. Another option would be to use a drive to help bring the roll up to speed. For further information or assistance, please contact your Warner Electric Distributor or Warner Electric Representative.

Design Considerations and Selection

Designing the Optimum Dancer Storage System

For closed loop dancer controlled systems, the actual web tension is determined by the downward pressure of the dancer roll or by the loading on the dancer on the web. Consequently, special attention should go into the design of the dancer arm system to provide both consistent tension and adequate web storage for optimum web stop performance.

Load Cell vs. Dancer

Deciding between a load cell and a dancer system requires consideration of many inter-related factors. Sometimes a load cell control is selected when the material being tensioned is not flexible and will not easily wrap around a dancer roll. For example, medium to heavy gauge metals are often tensioned with load cell systems.

Load cell systems can also be selected because of space limitations in the application, or because they are easier to retrofit to existing applications. In retrofit applications, precision balance or rollers may be required if line speeds are greater than 650 feet per minute.

Dancer tension control is still the preferred method of control in many applications. For example, high speed printing applications may require the "forgiveness" of a dancer system to take-up or release material during the dynamically unstable conditions seen at the unwind or rewind roll. The reasons for unstable conditions include fast decelerations or accelerations, out-of-round rolls, and flying splices. A dancer system should be considered when speeds are high and tension control requires extreme precision.

Dancer Roll Design and Construction

The dancer roll and control arms are the heart of this tension control system. Dancer construction is simple, but very important.

For optimum performance, the dancer should be a thin walled tubing and be loaded by massless, low friction air cylinders. A rolling diaphragm device is most commonly used. For greatest accuracy, the wrap on the dancer roll should be exactly 180 degrees.

Anything attached to the dancer for loading will detract from the dancer's ability to act as a buffer and should be made as light and (in the case of air cylinders) efficient as possible.

Construction of Dancer Arms for Webs

Dancer arms should utilize boxed construction to provide rigidity so that the web does not cause the arms to twist. This also insures that the web will track properly over the dancer roller.

The pivot point should be bearing mounted so the dancer arm can move freely. The dancer roller should also be bearing mounted and the bearings should be small in diameter and as frictionless as possible.

This will help reduce the bearing drag and friction changes which affect good tensioning. Standard feed conveyor rollers and bearings are usually sufficient.

Construction of Dancer Arms for Wire

Wire dancers usually employ a single arm. The pivot point and dancer roller should both be bearing mounted to minimize friction and drag. Standard wire rollers are very good dancer rollers for these type systems. These rollers usually contain excellent integral bearings.

Design Considerations and Selection

Dancer Systems

Dancer Design and Considerations

Warner Electric dancer control systems are designed to control tension in unwind, intermediate, or rewind applications for materials such as paper, foil, films, cloth, metals or wire. The system consists of four parts:

- 1. The controlling device, i.e. brake, clutch, or drive motor, AC or DC
- 2. The controller
- 3. A pivot point sensor which determines the position of the dancer roll
- 4. The dancer arm and roll assembly (customer supplied)

Dancer Arm Design

Various configurations of dancer arms exist, but their purpose is the same. The dancer provides a means of creating tension on the web by providing a force opposite to the direction the web is pulled.

Т

The effective force applied to the arm to create the desired tension is a function of the number of dancer rollers on the dancer arm.

Single Roll Dancer

 $F = 2 \times N \times T$

Where:

- F = Effective loading force against the web
- T = Tension desired in the web
- N = Number of dancer rollers

Multiple Roll Dancers

 $F = 2 \times N \times T$

Where:

F = Effective loading force against the web

T = Tension desired in the web

N = Number of dancer rollers

The more dancer rollers on the dancer arm, the higher the effective force must be to provide the same tension.

Dancer arms should be made of lightweight material to minimize the added effect of weight to the system as well as to keep the inertia as low as possible. Depending on the application and the amount of room available, this will dictate the type of design used and physical size.

The following figures depicting basic dancer designs are intended for guideline only. These are not the only configurations that can be used. Variations on these designs or other designs are acceptable as long as loading and storage requirements can be met.

Figure 1 - Horizontal Dancer with Vertical Movement

Figure 2 – Multiple Roll Dancer with Vertical Movement

Figure 3 - Vertical Dancer with Horizontal Movement

Figure 4 - S-Wrap Dancer with Vertical Movement

Dancer Systems

The following calculations offer a guide for designing a dancer arm. These will provide for an optimum system and for proper loading and storage with the system.

1. Determine Dancer Arm Length, L

This can be done by calculating the length based on the maximum operating linear speed of the system or from the chart below.

Calculating Length

Minimum L to maximum L should normally be 12" to 40".

b. Chart Determination

Chart 1 – Dancer Arm Length vs. Web Speed

2. Determine Swing Height of Dancer Arm, S

 $S = 1.04 \times L + D_{R}$

Where:

L = Length of arm calculated or chosen in Step 1.

 D_{R} = Diameter of dancer roller

3. Determine Height from edge of web to centerline of Dancer Pivot Point, H

 $H = \frac{S}{2} + D_{R}$

Where:

S = Swing height calculated from Step 2.

$$D_{R}$$
 = Diameter of dancer roller

Design Considerations and Selection

Because wide ranges of tensions are required from most systems, some type of loading is usually used to make setting the tension easier. The preferred method is to use a pneumatic cylinder [normally a low inertia, friction less type (Bello-fram) cylinder]. Weights or springs can be used, but these add weight and inertia to the system and are sometimes very difficult to stabilize.

4. Selecting the Loading Point, X

$$X_{MIN} = 0.25 \times L$$

 $X_{MAX} = 0.33 \times L$
Where :

L = Length of the dancer arm

5.* Calculating Cylinder Force Required, $\rm F_{c}$

$$F_{c} = \frac{F \times L}{X}$$

Where:

- F = Effective force of the dancer
- L = Length of the dancer calculated in Step 1
- X = Loading point calculated in Step 4

6. Calculating Cylinder Stroke required

Stroke = $2 \times X$ Tan30 or $1.155 \times X$

Where: X = Loading point from Step 4

By following these guidelines, a dancer design with the +/- 30 degree swing will be achieved. This is the range the Warner Electric pivot point sensors require for optimum control performance.

The following chart depicts the percentage of tension variations based on the dancer position in a properly designed dancer.

Chart 2 - Tension variation vs. dancer arm angle

* See page 135 for effective cylinder force at a given air pressure.

Design Considerations and Selection

The following notes are provided for information purposes and should be considered in the design of a dancer arm. Following these guidelines will result in a more optimized system.

I. Horizontal Dancer with Vertical Movement

A. Downward Loaded Dancer

Tension = Downward Loading Force 2 x Number of Dancer Rolls

Total Downward loading force at dancer roll =

Downward force created by loading + weight of dancer arm

In this case, the pressure required will be less because the dancer weight adds to the total loading force.

B. Upward Loaded Dancer Arm

Tension = Upward Loading Force $2 \times \text{Number of Dancer Rollers}$

Total Upward loading force at dancer roll =

Upward force created by loading weight of dancer arm

In this case, the pressure required will be greater because the dancer weight subtracts from the total loading force.

II. Vertical Dancer with Horizontal Movement

Dancer weight in this case is no longer a factor on the loading force on the dancer.

Tension = Loading Force 2 x Number of Dancer Rollers

Caution must be used when this type dancer and diaphragm type cylinders as the rod assembly is supported by the cylinder bushing only. Secondary support is necessary to keep the cylinder shaft from binding.

Dancer Arm Sensors

TCS-605-1 TCS-605-2 TCS-605-5

Warner Electric pivot point sensor is a precision electronic positioning device which is used with the MCS-203, MCS-207, TCS-210 or TCS-310 dancer control system to

provide smooth control of unwind stands operating at any speed. The sensor is mounted at one end of the dancer roll pivot shaft where it monitors the angular position, direction of travel and relative speed of dancer arm movement. TCS-605-2 used with drive systems.

Specifications

Model No.	Part No.	Description
TCS-605-1	7330-448-002	Single turn potentiometer for dancer arm systems where the range of rotary motion from full-up to full-down dancer position is normally maintained within 60° (1K Ω)
TCS-605-2	7330-448-004	Single turn potentiometer for drive systems (5K Ω)
TCS-605-5	7330-448-003	Five turn potentiometer for festooned dancer systems (1K Ω)
Accessories		
BTCS620	7330-448-007	See manual for drawings
	284-8000-003	Coupling for Pivot Point Sensors
	7330-101-001	TCS-605 Cable Assembly Only
	7330-101-002	TCS-605-1 Sensor Assembly Only
	7330-101-003	TCS-605-5 Sensor Assembly Only

Selection Guide

Selecting the Correct Tension Control

Selecting the correct tension control is as important as selecting the proper tension clutch or brake. As the control is the heart of the system which provides the necessary controlling function in the application, selecting the wrong control or inadequate control can be as bad as incorrectly sizing the mechanical portion of the system.

Normally control selection can be very simple if a few simple questions can be answered regarding the application. By doing so, selection can be very easy and painless.

Selection Steps

The following steps outline a simple way of selecting the proper control system for the application.

- 1. Determine the type of system that is to be used. Will the system be load cell, dancer, or open loop analog control?
- 2. Next, determine the type of brake or clutch system that the control will be used with. Will this be an electric or pneumatic system?
- 3. Using the Quick Selection Chart, determine which models may be suitable for the application.

Once the determination of the control/ controls has been made for the application, review the specifications for the various controls to determine the characteristics and features that best suit the application and your requirements.

Mechanical Elements

Once the control has been selected, be sure to check that it will work with the brake or clutch previously selected. This can be determined from the specific technical specification for the control selected. Remember, not all controls will work with all clutches and brakes.

If the control selected will not operate the controlling device selected, i.e., clutch or brake, then a different control must be selected.

		System Type					
		Op	en Loop	Close	d Loop		
Model Number	Output Voltage	Manual Adjust	Analog Input Adjust	Dancer	Load Cell	Air or Electric	Page
BXCTRL	0±10 (2 channel) (0–20mA)	•	•	•	•	Air/Electric	40
*TCS-200	0–24	•	•			Electric	47
TCS-200-1	0–24	٠	•			Electric	47
TCS-200-1H	0–24	•	٠			Electric	47
MCS-203	0–24			•		Electric	49
MCS-204	0–24	•	•			Electric	47
MCS-207	0–10 (1–50mA)			•		Air	51
TCS-210	0-24 (48)			•		Electric	50
TCS-220	0-24 (48)	٠	•			Electric	48
TCS-310	0–24 (48) (2 channel)			•		Electric	52

Control – Quick Selection Guide

*For new applications, we recommend the TCS-200-1 or TCS-200-1H.

Control	Description	Page Num.
BXCTRL	Solid state electronic control that receives signal from a Dancer pivot point sensor or 2 Load cells. It integrates 2 separate Digital PID Controllers and 2 separate Open Loop controls. See notes on page 41 for proper driver selection.	40
TCS-200	Inexpensive analog control with manual or remote follower adjust for elec- tric brakes. Also accepts roll follower potentiometer input. Requires 24-30 VAC input. For use with MTB Series electric brakes (page 56).	46
TCS-200-1 TCS-200-1H	Extremely versatile and economical open loop control for all 24V electric brakes and clutches. Can be used for manual adjust, or will follow an analog (0–10V, 4–20mA) input, such as from an ultrasonic sensor or PLC. For use with MTB, TB and ATTB Series and magnetic particle electric brakes. (page 56)	46
MCS-203	Closed loop dancer control for 24V electric clutches and brakes. For use with TB Series, ATTC and ATTB Series and Magnetic Particle clutches and brakes (page 56).	49
MCS-204	Analog control for 24V electric clutches and brakes. Manual control, or analog (0–10V or 4–20mA) signal. For use with TB Series, ATTC and ATTB Series and Magnetic Particle clutches and brakes (page 56).	47
MCS-207	Economical closed loop dancer control especially configured for air brakes. Provides a 0–10V or 4–20mA output to E/P transducers. For use with Pneumatic brakes (page 58).	51
TCS-210	Economical closed loop dancer control for all 24V brakes and clutches. Has reserve 48V supply for enhanced E-stop torque with certain brakes. For use with MTB Series electric brakes (page 56).	50
TCS-220	Analog control for 24V electric clutches and brakes. Manual adjust, or follows analog (0–10V or 4–20mA) input. Reserve 48V overexcite for E-stops. For use with MTB Series electric brakes (page 56).	48
TCS-310	Dancer splicer control (two output channels) for 24V electric brakes. Full splicing logic, and 48V overexcite for E-stops. For use with MTB Series electric brakes (page 56).	52

Modular Control Components

BXCTRL

Tension Control (P/N 6910-448-306)

Tension Controller

The BXCTRL controller is a solid state electronic control that receives signal from a Dancer pivot point sensor or 2 Load cells. It integrates 2 separate Digital PID Controllers and 2 separate Open Loop controls.

All setup can be made through a user friendly application and saved to the integrated memory, an SD card or your computer. Wire up to two Load cells or a Dancer arm to get a closed loop control with a linear or auto. compensation.

When associated with the BX2DRV, the controller becomes the BXCTRL-BX2DRV. Power supply, input and communication will be made by an internal connection.

Specifications

Main Supply Voltage	24VDC +/-5%
2 Channels Sensors Input	Dancer Arm or up to two Load Cells (customer provided)
2 Channels Output	Selectable 0-10V or 4-20mA through an application
2 PID Controller	PID Gain adjustable with the application
USB Connection	Connect your BXCTRL to your computer with a USB cable and get access to the application
User Friendly Application	Setup all parameters through a user friendly application and get a graphic overview.
Parameters Partitions Saving	Through the application save your parameter partitions on your computer or in an SD card.
Open Loop Control	Get an open loop control by wiring an external sensor. Selectable 0-10V or 4-20mA
Linear and Auto. Compensation	Get a closed loop control with a linear or auto. compensation. Selectable with the application

Modular Control Components

BX2DRV

Driver (P/N 6910-448-305)

BXCTRL-BX2DRV

Driver (P/N 6910-448-307)

Tension Controller

This double channel driver can accept both voltage (0-10V) or current loop (4-20mA) input signals.

With being associated to a remote potentiometer, it will become an Open Loop Control, permitting then to manually control the braking torque.

Optional Rail DIN fixation available.

For use with TB, ATT and MPB or MPC unit. POB, PRB-H, PTB, PMC, PHC or POC. Sizes 10 or smaller.

Specifications

Main Supply Voltage	24V DC +/-5%
mani ouppiy tonago	
2 Channels 4A Output	0-24V or 0-4A Selectable with Anti residual
2 Analog Input	0-10V or 4-20mA Selectable
Easy to set up	ON and OFF Mode Inputs
2 Auxiliary Inputs with a Calibration Feature	Get an open loop control with a roll diameter compensation
	Sensor Input 0-10V or 4-20mA Selectable

Tension Control/Driver

Combines control and driver characteristics of BXCTRL and BX2DRV with a 24 volt driver in a single housing.

Modular Control Components

DRV2

Driver Control (P/N 6910-448-109)

Tension Controller

Dual Channel/Dual Voltage Driver for 24 VDC or 48 VDC Operation. For use with MTB brakes or POB, PRB-H, PTB, PMC, PHC or POC. Size 20 or smaller.

Specifications

Input Voltage	24 Volts DC or 48 Volts DC, + / - 10%
Output Voltage	24 VDC or 48 VDC depending on power supply input voltage. In Overvoltage mode, output voltage is limited to 48 volts DC for 30 seconds before reducing to 24 VDC.
Output Current	Maximum of 4.5 amps DC per channel. Overload capacity to 6 amps maximum per channel for 30 seconds, to be followed by maximum 3 amps for a period of minimum 120 seconds.
Anti-Residual Output	10% of input power supply voltage. Adjustable for each channel2.4 volts DC with 24 VDC power supply input -4.8 volts DC with 48 VDC power supply input
Analog Input Voltage:	0 to 10 Volts DC on Input A or Input B. When operating with 48 volt DC power, input of 0 to 5 volts corresponds to 24 Volt DC output, and from 5 to 10 volts input overvoltage mode from 24 to 48 volts DC with timed limitation
Status and Diagnostic Indicators:	2 LED's on each channel indicate normal operation and fault conditions during operation. One Green and one Red LED.
Input	Polarity protected to prevent damage in the event of inversion of DC power supply voltages.
Output	Short circuit protected during operation and power up. Output is also protected from overload conditions. Once short circuit is detected, drive locks out for 10 msec and resets. After 4 cycles, drive trips out and requires reset.
Reset Mode	Requires power off and then power on to reset driver.
Wiring	Via 10 position pluggable terminal block.

XPRO

Tension Control System (P/N 6910-448-308)

Tension Control System

The XPRO human interface is an optional component to the Warner Electric BXCTRL control which is providing to the user an easy way to get access to the PID regulation SetPoint.

It is generally used with load cells application when the current Tension needs to be changed when running.

It's offering some display screens which could be setup to show some curves or some other data as the current tension, the real time output voltage.

Modular Control Components

Electro-Pneumatic Transducer

(P/N 6910-101-066)

Used for interfacing with pneumatic brakes. Warner Electric offers a convenient package that consists of an air filter with automatic moisture drain, together with one I/P (current-pressure) transducer.

Specifications

Input signal	4–20mA
Output range	0–120 Psig.
Supply pressure	20–150 Psig. Note: Supply pressure to the transducer must always be at least 5 Psig. above the maximum output pressure required for the brake.
Temperature range	-20°F to 150°F
Minimum air consumption	6.0 (SCFH) at 15 Psig.
Supply pressure effect	1.5 Psig. for 25 Psig. supply change
Pipe size	1/4" NPT (transducer and filter)

Modular Control Components

BXCTRL Dimensions

Modular Control Components

BX2DRV Dimensions

DRV2 Dimensions

Analog/Manual Control for Electric Brake Systems

TCS-200-1

(P/N 6910-448-086)

TCS-200-1H (P/N 6910-448-087)

TCS-200 (P/N 6910-448-126)

TCS-200-1-C (P/N 6910-448-089) (not shown)

Analog/Manual Control

WARNER ELECTRIC TCS-200-1

The Analog/Manual Control is a basic, low cost, open loop control for manual type operation of Electro Disc tension brakes. A remote torque control function is available that enables the operator to control the desired tension from any convenient location. A roll follower feature provides automatic adjustment of brake torque proportional to roll diameter change. For the TCS-200-1 and TCS-200-1H analog inputs can be followed.

Typical System Configuration

The complete system consists of:

- 1. Tension brake
- 2. Analog tension control
- 3. Control power supply
- 4. Optional sensor inputs (customer supplied)

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

Specifications

Input TCS-200 TCS-200-1, TCS-200-1H	24–30 VAC, ±10%, 56/60 Hz, single phase 115/230 VAC, ±10%, 50/60 Hz, single phase
Output TCS-200	PWM full wave rectified, 0-3.24 amps
TCS-200-1	Adjustable 0–24 VDC, 4.25 amps
TCS-200-1H	Adjustable 0–24 VDC Maximum of 5.8 amps continuous
	Can be used with any 24 VDC tension brake. TCS-200 requires sense coil for operation. Sense Coil – 275-3893 TCS-200-1 and TCS-200-1H can be used with or without sense coil.
Ambient Temperature TCS-200 TCS-200-1, TCS-200-1H	–20° to +115°F (–29° to +46°C) –20° to +125°F (–29° to +51°C)
Sensor Inputs Remote Torque Adjust TCS-200, TCS-200-1,	1000 - have
Roll Follower	1000 onms
TCS-200 TCS-200-1, TCS-200-1H	10K ohms 1000 ohms
Analog Voltage Input TCS-200-1, TCS-200-1H	0–10 VDC (optically isolated when used with an external 15–35 VDC supply)
Analog Current Input TCS-200-1, TCS-200-1H	4–20 mA (optically isolated when used with an external 15–35 VDC supply)
Auxiliary Inputs Brake Off (all models)	Removes output current to the
Brake On (an models)	brakes. Puts the brake at zero current.
Brake On (all models) Front Panel Adjust	Applies full voltage to the connected brake.
Tension Adjust (all models)	Provides current adjust to the brake from
	0-100%. In the remote mode, provides for maximum output level set to the brake.
Brake Mode Switch (all models)	Allows for full brake on, run, or brake off modes of operation to the brake.
Indicators (all models)	Green LED power indicator showing AC power is applied to the control. Red LED short circuit indicator showing shorted output condition. Resettable by going to brake off mode with front paged switch
General (all models)	The control chassis must be considered NEMA 1 and should be kept clear of areas where foreign material, dust, grease, or oil might affect control operation.

Note: When used with other than MTB magnets, inductive load must be supplied – PN 275-3843. Consult factory for details.

Analog Control for Electric Brake Systems

Remote/Analog control

The MCS-204 control, also completely solid state, is designed for manual or analog input control. The MCS-204 can control two 24 VDC tension brakes in parallel. It also has an antiresidual (magnetism) circuit, a brake on and a highly accessible terminal strip for rapid connection. It is designed for use with the MCS-166 power supply.

MCS-166 Power Supply (page 53).

Input Output	24-28 VDC @ 3 Amps (from MCS-166, 1.5 amps for single MCS-166; 3.0 amps from dual MCS-166's) or other power source. Pulse with modulated 0-24 VDC for 24 volt Warner Electric tension brakes.
Ambient Temperature	–20° to +113°F (–29° to +45°C).
External Inputs	
Torque Adjust	Controls tension by applying the desired amount of current to the brake.
Brake On	Applies full current to tension brake.
Brake Off	Removes brake current and applies antiresidual voltage to eliminate brake drag. Useful when changing rolls.
Operating Modes	
Local Torque Adjust	Knob on front panel.
Remote Torque Adjust	Via remote potentiometer.
Roll Follower	Using external potentiometer.
Current Loop	1–5 mA, 4–20 mA, 10–50 mA. Voltage Input: 0–14.5 VDC.
Mounting	Available for panel mounting with exposed wiring or wall/shelf mounting with conduit entrance. Must be ordered with either wall/shelf or panel enclosures.

Requires enclosure, see page 54.

Specifications

Typical System Configuration

The complete system consists of:

- 1. Tension brake
- 2. Analog tension control
- 3. Control power supply
- 4. Analog signal input (customer supplied)

The control unit maintains a current output to

the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

Analog Control for Electric Brake Systems

TCS-220

(P/N 6910-448-027)

(Shown with Housing)

The remote analog input control is an open loop system designed to allow easy interface with existing or specially designed customer controls to complete a closed loop system. The system also offers complete operator controllability for manual tensioning control.

TCS-167 Power Supply, (page 53).

Note: When used with other than MTB magnets, a resistor, 68 ohms, 25 watts, must be added. Consult factory for details.

Specifications

Input	 TCS-220 – 48 VDC @ 3.2 Amps continuous, 48 VDC @ 6 Amps intermittent, 1.6% duty cycle, 30 sec. on time, 8–12 VDC @ 1.5 Amps. TCS-167 – 120 VAC, 50/60 Hz or 240 VAC, 50/60 Hz (Switch selectable).
Output	TCS-220/TCS-167 – 0–270 mA/magnet (running); 270–500 mA/magnet (stopping), up to 12 magnets.
Ambient Temperature	–20° to +113°F (–29° to +45°C).
External Inputs	
Torque Adjust	Controls tension by applying the desired amount of current to the brake.
Emergengy Stop	Applies full current to tension brake.
Brake Off	Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
Operating Modes	
Local Torque Adjust	Knob on front panel.
Remote Torque Adjust	Via 1K to 10K ohm potentiometer.
Roll Follower	Via 1k to 10k ohm potentiometer.
Current Loop	1–5 mA, 4–20 mA, 10–50 mA current source.
Voltage Input	0–14.5 VDC.
Adjustments	
Torque Adjust/Span	Controls output manually in local torque mode. Sets maximum control span in remote torque adjust, roll follower, current loop; or voltage input mode.
Zero adjust	Potentiometer adjustment for setting zero output level. Front panel access.
Brake off input	Terminal strip connection which provides for removal of brake current and applies antiresidual current to eliminate brake drag. Used primarily when changing rolls.
Brake on input	Terminal strip connection applies full current to brake when activated regardless of input control signal. Used for emergency stops.
Mounting	 TCS-220 – available as panel mounted with exposed wiring, or wall/shelf mounted with conduit entrance. TCS-167 – Available with open frame or wall/shelf mounted enclosure with conduit

Requires enclosure, see page 54.

Typical System Configuration

The complete system consists of:

- 1. Tension brake
- 2. Analog tension control
- 3. Control power supply

4. Analog signal input (customer supplied)

The control unit maintains a current output to

the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

Dancer Control for Electric Brake Systems

MCS-203

(P/N 6910-448-014)

The completely solid state MCS-203 Dancer Control Module is designed for automatic web tensioning through the use of a dancer roll. The MCS-203 can control two 24 VDC tension brakes in parallel. It works on the concept of a P-I-D controller and has internal P, I & D adjustments for optimum performance regardless of brake size.

MCS-166 Power Supply, (page 53).

Specifications

Input	24–28 VDC @ 3 Amps (from MCS-166, 1.5 amps for single MCS-166; 3.0 amps from dual MCS-166's) or other power source.
Output	Pulse width modulated 0–24 VDC for 24 volt Warner Electric tension brakes.
Ambient Temperature	–20° to +113°F (–29° to +45°C).
External Inputs	
Dancer Potentiometer	Provides the feedback signal of dancer position and movement for input to the control.
Brake On	Applies full current to tension brake.
Brake Off	Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
Antidrift Input	Nullifies integrator portion of control for faster brake response. Important for splicing and mid-roll starting.
Mounting	Available for panel mounting with exposed wiring or wall/shelf mounting with conduit entrance. Must be ordered with either wall/shelf or panel enclosures.

Requires enclosure, see page 54.

Typical System Configuration

The complete system consists of:

- 1. Tension brake
- 2. Dancer tension control
- 3. Control power supply
- 4. Pivot point sensor
- 5. Dancer roll assembly (customer supplied)

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

Dancer Control for Electric Brake Systems

TCS-210

(P/N 6910-448-026)

(Shown with Housing)

This closed loop tension control system automatically controls tension on unwinding materials such as paper, film, foil, cloth and wire.

TCS-167 Power Supply, (page 53).

Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Specifications

Input	 TCS-210 – 48 VDC @ 3.2 Amps continuous, 48 VDC @ 6 Amps intermittent, 1.6% duty cycle, 30 sec. on time, 8–12 VDC @ 1.5 Amps. TCS-167 – 120 VAC, 50/60 Hz or 240 VAC, 50/60 Hz (Switch
	selectable).
Output	TCS-210/TCS-167 – 0–270 mA/magnet (running); 270–500 mA/ magnet (stopping), up to 12 magnets.
Ambient Temperature	–20° to +113°F (–29° to +45°C).
External Inputs	
Dancer Potentiometer	Provides the feedback signal of dancer position and movement for input to the control.
Brake On	Applies holding brake voltage.
Anti-Drift Input	Nullifies integrator portion of control for faster brake response. Important at startup and for mid-roll starts.
Brake Off	Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
Mounting	TCS-210 – available as panel mounted with exposed wiring, or wall/shelf mounted with conduit entrance.
	TCS-167 – available with open frame or wall/shelf mounted enclosure with conduit entrance.

Requires enclosure, see page 54.

Typical System Configuration

The complete system consists of five components:

- 1. Tension brake
- 2. Dancer tension control
- 3. Control power supply
- 4. Pivot point sensor
- 5. Dancer roll assembly (customer supplied)

The weight of the dancer roll or loading on the dancer determines the tension on the web and the remainder of the system operates to hold the dancer roll as steady as possible. When the dancer position changes, the Warner Electric pivot point sensor tracks the direction and speed of the change and sends an electric signal to the closed loop control, which, in turn, relays a corrective signal to the Electro Disc tension brake. Increasing current to the Electro Disc increases braking torque to elevate the dancer to the desired position, while reducing brake current lowers the dancer.

The closed loop dancer control system is completely automatic, limiting the need for operator involvement and the potential for inaccurate tension control. The system offers exceedingly rapid response that, in effect, corrects tension errors before they reach the work area of the processing machine.

Dancer Control for Pneumatic Brake Systems

MCS-207

(P/N 6910-448-066)

(Shown with Housing)

The dancer control, MCS-207 is designed for automatic web tensioning through the use of a dancer roll. The MCS-207 can control either a voltage to pneumatic or current to pneumatic transducer with an air operated clutch or brake. It works on the concept of a P-I-D controller and has internal adjustments of the P-I-D loops for optimum performance regardless of the brake size.

MCS-166 Power Supply, (page 53).

Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Specifications

Input	24–28 VDC, 0.5 amps maximum (from MCS-166 or other power source)
Output	Switch selectable current or voltage Voltage: 0–10 VDC Current: 1–5 mA, 4–20mA, 10–50mA Will operate most electric to pneumatic transducers available.
Ambient Temperature	+32° to +120°F (0° to +49°C).
Control Input	Pivot point sensor, MCS-605-1 or TCS-605-5
External Inputs	
Brake On	Applies maximum output signal (voltage or current) to the transducer
Brake Off	Removes output from the transducer and applies minimum level
Anti-Drift	Provides integrator reset function for mid-roll starting
Adjustments	
Front Panel	Dancer Position: sets dancer operating position
	Gain: Controls overall system response based on change of dancer input signal
Mounting	Available as panel mounted with exposed wiring, or wall/shelf mounted with conduit entrance. Note: Must be ordered with wall/ shelf enclosure or with panel mount enclosure.

Requires enclosure, see page 54.

Typical System Configuration

The complete system consists of:

- 1. Pneumatic tension brake
- 2. Dancer tension control
- 3. Control power supply
- 4. Pivot point sensor
- 5. E to P transducer
- 6. Dancer roll assembly (customer supplied)

The control unit maintains an output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the signal from the control creates more or less brake torque for tension adjustability.

Dancer Splicer Control for Electric Brake Systems

TCS-310

(P/N 6910-448-042)

This closed loop tension control system automatically controls tension on unwinding materials such as paper, film, foil, cloth and wire.

TCS-168 Power Supply, (page 53).

Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Typical System Configuration

Specifications

Input	TCS-310 – 48 VDC @ 6.4 Amps continuous, 48 VDC @ 12 Amps intermittent, 1.6% duty cycle, 30 sec. on time, 8–12 VDC @ 3.0 Amps.
	TCS-168 – 120 VAC, 50/60 Hz or 240 VAC, 50/60 Hz (Switch selectable).
Output	TCS-310/TCS-168 – 0–270 mA/magnet (running); 270–500 mA/ magnet (stopping) on controlled output channel 0 to 90 mA holding channel, up to 12 magnets per channel.
Ambient Temperature	–20° to +113°F (–29° to +45°C).
External Inputs	
Dancer Potentiometer	Provides the feedback signal of dancer position and movement for input to the control.
Brake On	Applies holding brake voltage.
Anti-Drift Input	Nullifies integrator portion of control for faster brake response. Important for start-ups.
Brake Off	Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
Mounting	TCS-310 – available as NEMA 4 enclosure with remote control station.
	TCS-168 – available with open frame or wall/shelf mounted enclo- sure with conduit entrance.

The complete system consists of five components:

- 1. Two tension brakes
- 2. Dancer splicer control
- 3. Control power supply
- 4. Pivot point sensor
- 5. Dancer roll assembly (customer supplied)

The weight of the dancer roll or loading on the dancer determines the tension on the web and the remainder of the system operates to hold the dancer roll as steady as possible. When the dancer position changes, the Warner Electric pivot point sensor tracks the direction and speed of the change and sends an electric signal to the closed loop control, which, in turn, relays a corrective signal to the Electro Disc tension brake. Increasing current to the Electro Disc increases braking torque to elevate the dancer to the desired position, while reducing brake current lowers the dancer.

The closed loop dancer control system is completely automatic, limiting the need for operator involvement and the potential for inaccurate tension control. The system offers exceedingly rapid response that, in effect, corrects tension errors before they reach the work area of the processing machine.

Power Supplies and Accessories

MCS-166

(P/N 6910-448-013)

(Shown with Housing)

Power Supply for MCS-203, MCS-204 and MCS-207 Controls

Warner Electric's MCS-166 is the companion power supply module to be used with MCS-203 and MCS-204 tension controls. The MCS-166 supplies the 24–28 VDC that these systems require. The MCS-166 is a modular unit designed to couple with its respective control or it can be mounted separately. It is also fused for overload protection, has a voltage indicator light, and is internally protected against 240 VAC input when set for 120 VAC.

Specifications

Input

120 VAC 50/60 Hz or 240 VAC 50/60 Hz (switch selectable).

Output

24-28 VDC (1.5 Amps).

Note: For dual brake application, two MCS-166's are required, 3.0 amps output.

Ambient Temperature

–20° to +113°F (–29° to +45°C).

Mounting

Available for panel mounting with exposed wiring or wall/shelf mounting with conduit entrance. Must be ordered with either wall/ shelf or panel enclosures.

Requires enclosure, see page 54.

Magnet Selector Static Switch

The magnet selector switch allows magnets to be dynamically or statically added or removed from the tension system to be tailored to the application need. Examples include shedding magnets for narrow, light webs near core or adding magnets for emergency stops. TCS-167 (P/N 6910-448-025)

The TCS-167 power supply is designed to provide the correct power input to TCS-210 and TCS-220 tension controls. Its switch selectable input allows the user to adapt to 120 or 240 VAC. It has dual voltage circuits to provide low voltage power and anti-residual output as well as power to operate a brake. The TCS-167 is available with an open frame for control panel mounting.

Specifications

Input

120 VAC or 220/240 VAC, \pm 10%, 50/60 Hz, 1 phase. (switch selectable)

Output

Unregulated 9-12 VDC @ 1.5 Amps Unregulated 48 VDC @ 3.2 Amps continuous, 48 VDC @ 6 Amps intermittent, 1.6% duty cycle, 30 seconds on time.

Ambient Temperature

-20°F. to +113°F. (-29°C. to +45°C.)

Mounting

Open frame wall/shelf mount with conduit entrance

TCS-168

(P/N 6910-448-032)

The TCS-168 power supply is designed to provide the correct power input to the TCS-310 Dancer Splicer Control. Its switch selectable input allows the user to adapt to 120 or 240 VAC. It has dual voltage circuits to provide low voltage power and anti-residual output as well as power to operate two brakes. The TCS-168 is available with an open frame for control panel mounting.

Specifications

Input

120 VAC or 220/240 VAC, +_ 10%, 50/60 Hz, 1 phase. (switch selectable)

Output

Unregulated 9-12 VDC @ 3 Amps Unregulated 48 VDC @ 6.4 Amps continuous, 48 VDC @ 12 Amps intermittent, 1.6% duty cycle, 30 seconds on time.

Ambient Temperature

-20°F. to +113°F. (-29°C. to +45°C.)

Mounting

Open frame wall/shelf mount with conduit entrance

Each selector switch provides two circuits, each capable of switching up to four magnets.

How to Order

To order, specify Magnet Selector Static Switch 6910-101-007.

Dimensions/Enclosures

Dimensions

TCS-200-1

Wall/Shelf Mount

Tension Controls – For use with MCS-203, MCS-204 or MCS-207 order part number 6910-448-016.

For use with TCS-210 or 220, order part number 6910-448-029.

Power Supplies – For use with MCS-166, order part number 6910-448-019.

Ribbon Cable

A ribbon cable has been added to the rear terminal board of the MCS-203/204/207 and MCS-166 enclosures to improve performance and reliability. The upgrade is fully retrofitable and enclosure part numbers have not changed.

Dimensions/Enclosures

Dual Brake Controls

TCS-310

Power Supplies TCS-167, TCS-168

(P/N 6910-448-033)

(8.5)

(0.5625)

Tension Controls Selection Guide

Selection Guide

Selecting the proper clutch or brake starts with collecting the appropriate data. See the data form on page 13. Once the data is collected, go through the various calculations for thermal and torque requirements. Examples are on pages 16-28. At this point, a general selection can be made from these two pages. Then go to the applicable page for further details on the unit such as mounting considerations and dimensions.

Finally, a control system must be chosen – several factors will influence this choice, such as degree of accuracy required (open vs. closed loop), physical restraints in the machine (dancer or load cell). Go to the controls section on page 38 for full specifications and details on these various controls systems.

Once control system is selected, determination of dancer, load cell, or analog system can be made. Dancer design considerations can be found on pages 32-36.

You are now well on the way to specifying the best tension control system available.

	Product	Description and most suitable applications
	TB Series	Basic Tension Brakes
	Brakes	Single disc friction electromagnetic brake. Available in 6 and 24vdc. The 24v units are compatible with Warner 24v tension controls. Very economical. Excellent life when properly sized.
		Advanced Technology Brakes & Clutches
	ATT Series	The tension version of the popular Warner Electric Advanced Technology clutches and brakes. Economical and easy to install. The clutch has an easily adaptable pulley mounting. Available in 24 and 90vdc. The 24v units are compatible with Warner 24v tension controls. For purely manual operation, the 90v units can be controlled with the MCS-103-1 or CBC-300 found in catalog P-8587-WE.
	Diakes & Oluteries	
	MTB Series	Modular Tension Brakes
Electric		Single or double disc electromagnetic brake uses multiple pucks for precise selection of torque range. Unique design provides up to double normal operating torque for E-stops. Works with Warner Electric 24V tension controls.
	Brakes	
	M Series	Permanent Magnet Brakes & Clutches
	Brakes & Clutches	These units can be used as either clutch or brakes. They operate with permanent magnets, thereby requiring no external power source. Very accurate torque control is manually adjustable.
	Magnetic Particle	Magnetic Particle Brakes & Clutches
		Very precise torque control in an enclosed unit that does not have friction discs, but employs magnetically charged powder that varies torque according to current. Works with Warner Electric 24V tension controls.
	Brakes & Clutches	

	Heat Transf	er Capacity		
Dynamic Torque Rating	Continuous Operation	On-Off Operation	Typical Applications and Comments	Page No
0.50–256 lb.ft.	.02–1.1 HP	.03–2.12 HP	Narrow to medium width web machines such as business forms presses. Also good on wire pay- offs. A low-cost alternative in many applications.	60
7–62 lb.ft. Up to 83 lb.ft. with overcurrent	.3 to .9 HP	_	Light tension on narrow web paper or plastic film, such as bag making machines and printing presses. Clutch provides a good, economical solution on many winders.	66
0.21–592 lb.ft. Up to 1,120 lb.ft. with overcurrent	.25–2.75 HP	_	The work horse of the brake line. Wide dynamic torque range. Good for business forms presses, wire pay-offs, slitters, coaters. Excellent choice for closed loop as well as open loop systems.	74
0–65 lb.in.	3-150 watts	_	Excellent problem solver for difficult light tension applications. Particularly good for nip-roll control where diameter compensation is not required. Perfect solution for wire braiders and twisters where pay-off is spinning. No control required	86
.17–578 lb.ft.	10-400 watts	_	Excellent solution where wear particles of friction disc units cause a problem. Very precise torque regulation. Will operate with great accuracy at lower speeds than friction disc units. Staying within thermal capacity is critical for long life.	94

Tension Brakes and Clutches

	Product	Description and most suitable applications
	Mistral	Pneumatic Brakes
atic	Brakes	The Mistral combines high thermal capacity with a rugged, easy-to-maintain design. No guard is required. Both open and closed loop controls available. Optional cooling fan increases heat dissipation.
Juné	MODEVO	Pneumatic Brakes
Pne		Combination of high thermal capacity and broad range of torques through various selection of actu- ators and friction pads. Option for increase thermal capacities.
	Brakes	

Tension Brakes and Clutches

	Heat Transf	er Capacity		
Dynamic Torque Rating	Continuous Operation	On-Off Operation	Typical Applications and Comments	Page No
5.2–1,328 lb.ft.	3.2-6.4 HP	3.5–7.0 HP	The brake of choice in the corrugator industry due to long life and ease of maintenance. Other converting industry applications apply equally.	118
0.6–3,180 lb.ft.	1–17 HP 4-18 HP with optional blower	_	Compatiblities of various actuator and friction pad combinations allow for wide range of appli- cations.	122

Electric Brakes

TB Series – Basic Tension Brakes

System Features

- Full roll to core control
- Consistent tension, even during flying splices, rapid starts and emergency stops
- Eliminates web flutter to allow better registration control
- Electronic System responds in milliseconds
- Dramatically reduces material waste, downtime and maintenance
- Total systems capability—worldwide distribution—local professional service.

Features – Basic Tension Brakes

- Ideal for light duty, light load unwind tension applications
- Cost effective
- Compact package size
- Eight models
- Small sizes, from 1.7" dia. to 15.25" dia.
- .025 to 1.09 thermal horsepower capacity

Complete Control Capability

Warner Electric offers two functionally different controls and a companion power supply for all models of TB Series 24 VDC tension brakes. All three units offer compact dimensions and modular design for easy, low cost maintenance. Both controls (MCS-203/MCS-204) and the power supply are furnished with either a panel mount or wall/shelf mount enclosure at no added cost. Controls information starts on page 38.

MCS-203 Dancer Control

MCS-204 Remote/Analog Control

	Energ	y Rate	Maximum	Minimum ²	Maximum ³	Amne	Ohme	Watte
Unit Size	Continuous	Alternate ¹	RPM	Torque (lb.ft.)	Dynamic Torque (lb.ft.)	Ашрэ	UIIIIS	Walls
TB-170	0.02 HP	0.03 HP	5000	0.000	0.500	.215	111.2	5.16
TB-260	0.04 HP	0.06 HP	5000	0.060	1.700	.400	60	9.6
TB-425	0.08 HP	0.13 HP	5000	0.120	5.200	.317	76	7.6
TB-500	0.13 HP	0.24 HP	5000	0.150	18.500	1.0	24	24
TB-825	0.27 HP	0.48 HP	3000	0.360	43.200	1.18	20	28
TB-1000	0.48 HP	0.88 HP	2400	0.790	88.000	1.22	20	29
TB-1225	0.70 HP	1.27 HP	2000	1.430	172.000	1.08	22	26
TB-1525	1.09 HP	2.12 HP	1600	2.130	256.000	1.21	20	29

Notes

1. Alternate duty operation is defined as 30 minutes run-time with 30 minutes off-time

2. Minimum torque is with Warner Electric tension control providing anti-residual current to brake in off state. Minimum torques will be higher when

controls without anti-residual current are used.

3. Dynamic torques are based on 30 RPM slip speed

TB Series – Basic Tension Brakes

Dimensions

TB-170

TB-260

TB-425

* Mounting holes are within .010" (.254) of true position relative to pilot diameter.

inches (mm)

	Α	В	C	D	E	F	G	Н	J	K	L
Model	Max.	Max.					Max.				
TP 170	1.813	1.203	.404	.750	.812	.281	1.828	2.437/2.435	.204/.187	2.125	#8-32
IB-170	(46.05)	(30.55)	(10.26)	(19.05)	(20.64)	(7.14)	(46.43)	(61.90/61.85)	(5.18/4.75)	(53.98)	UNC-3A
	2.719	1.906	.6875	1.375	1.250	.4688	2.641	3.500/3.498	.204/.187	3.125	#8-32
10-200	(69.06)	(48.42)	(17.46)	(34.93)	(31.75)	(11.91)	(67.08)	(88.90/88.85)	(5.18/4.75)	(79.38)	UNC-3A
TD 425	4.375	2.047	.875	2.437	1.250	.5625	4.266	5.625/5.623	.296/.280	5.000	#1/4-20
10-420	(111.13)	(51.99)	(22.23)	(61.91)	(31.75)	(14.29)	(108.36)	(142.88/142.82)	(7.52/7.11)	(12.70)	UNC-3A

Bore and Keyway Data

Model No.	Part No.	Voltage	Bore	Keyway	Model No.	Part No.	Voltage	Bushing	Bore	Keyway
	5375-1	6V	1/4"	none		5310-2	6V	Dodge 1215	1/2-9/16	1/8" x 1/16"
	5375-4	24V	1/4"	none	TB-500	5310-24	24V	(see pg 133 for	5/8-7/8	3/16" x 3/32"
TD 170	5375-2	6V	5/16"	none				for specific P/N)	15/16–1-1/4	1/4" x 1/8"
ID-170	5375-5	24V	5/16"	none						
	5375-3	6V	3/8"	none	Dimensio	ns				
	5375-6	24V	3/8"	none	TR 500				1	
	5365-2	6V	3/8"	3/32" x 3/64"	- 18-500		<i>N</i>	→ (<u> </u>
	5365-8	24V	3/8"	3/32" x 3/64"		$\ $))			
	5365-3	6V	7/16"	1/8" x 1/16"						
	5365-9	24V	7/16"	1/8" x 1/16"						
TP 260	5365-4	6V	1/2"	3/16" x 3/32"			L L			
IB-260	5365-10	24V	1/2"	3/16" x 3/32"			Эh		3 ¦	\bigcirc
	5365-5	6V	5/8"	3/16" x 3/32"		<u> </u>				\sim \sim
	5365-11	24V	5/8"	3/16" x 3/32"			Ц /-	J /		
	5365-6	6V	3/4"	3/16" x 3/32"						
	5365-12	24V	3/4"	3/16" x 3/32"						
	5367-5	6V	1/2"	1/8" x 1/16"		<u></u>			9/ j	70 1 1
	5367-9	24V	1/2"	1/8" x 1/16"		<u>, → 📲 D</u>	╼╋╌╷┼╴	⊻{	- (
	5367-6	6V	5/8"	3/16" x 3/32"					2	10 11
TR 425	5367-10	24V	5/8"	3/16" x 3/32"						
10-425	5367-7	6V	3/4"	3/16" x 3/32"			,Ӈ ♦	$\setminus X$		
	5367-11	24V	3/4"	3/16" x 3/32"		리	ſ∥ F	X		
	5367-8	6V	7/8"	3/16" x 3/32"		-	Γl			
	5367-12	24V	7/8"	3/16" x 3/32"	<u>+ </u> <u></u>		~			-
					-			G –⁄	1	

dia. (8) holes equally spaced on **H** dia. B.C.*

* Mounting holes are within .010" (.254) of true position relative to pilot diameter.

Model	A Max.	B Max.	C	D	E Max.	F	G	Н	J
TB-500	5.125	3.140	1.500	1.594	5.062	2.062	.208/.201	2.375	#8-32
	(130.18)	(79.77)	(38.10)	(40.48)	(128.59)	(52.39)	(5.28/5.11)	(60.33)	UNC-3A

- B -

For replacement parts list and exploded view drawing, see page 64. Note: All dimensions are nominal unless otherwise noted.

inches (mm)

Electric Brakes

TB-825

TB Series – Basic Tension Brakes

inches (mm)

	Α	В	C	D	E	F	G	Н	I	J
Model	Max.		Max.				Max.	Dia.		Dia.
TB-825	3.671	1.312	.562	5.656	1.593	1.500	8.468	4.625	.609	2.187
	(93.24)	(33.32)	(14.27)	(143.66)	(401.46)	(38.10)	(215.09)	(117.48)	(15.47)	(55.55)
TR 1000	4.109	1.453	.562	6.531	1.906	1.750	10.187	6.250	.609	3.875
18-1000	(104.37)	(36.91)	(14.27)	(165.89)	(48.41)	(44.45)	(258.75)	(158.75)	(15.47)	(94.83)
TB-1225	5.390	1.6740	.562	7.531	3.000	3.000	12.437	6.875	.609	4.500
	(136.91)	(41.66)	(14.27)	(191.29)	(76.20)	(76.20)	(315.90)	(174.63)	(15.47)	(114.30)

	K	1	м	N	0	Р	0	R	S	т
Model	Min.	-			Ū	Max.	-		Ū	•
TB-825	.093	.062	5/16-18	1.546	.921	3.503/3.501	3.750	6.406	.358/.338	4.250
	(2.36)	(12.57)	UNC-3A	(39.27)	(23.39)	(88.98/88.93)	(95.25)	(162.71)	(9.09/8.59)	(107.95)
TD 1000	.093	.062	5/16-18	1.546	.921	5.378/5.376	3.750	7.687	.358/.338	6.125
IB-1000	(2.36)	(1.57)	UNC-3A	(39.27)	(23.39)	(136.60/136.55)	(95.25)	(195.25)	(9.09/8.59)	(155.58)
TB-1225	.093	.062	5/16-18	1.546	.921	6.378/6.376	3.750	8.687	.358/.338	7.250
	(2.36)	(1.57)	UNC-3A	(39.27)	(23.39)	(162.00/161.95)	(95.25)	(220.65)	(9.09/8.59)	(184.15)

See page 133 for specific bushing part numbers.

Bore and Keyway Data

Model #	Part #	Voltage	Bushing	Bore	Keyway	Model #	Part #	Voltage	Bushing	Bore	Keyway
TB-825	5311-2	6V	Dodge 1615	1/2-9/16	1/8" x 1/16"		5313-1	6V	Dodge 3030	15/16-1-1/4	1/4" x 1/8"
	5311-24	24V	(see pg 133 for	5/8-7/8	3/16" x 3/32"		5313-24	24V	(see pg 133 for	1-5/16-1-3/8	5/16" x 5/32"
			for specific P/N)	15/16–1-1/4	1/4" x 1/8"	TB-1225			for specific P/N)	1-7/16–1-3/4	3/8" x 3/16"
				1-5/16–1-3/8	5/16" x 5/32"					1-13/16-2-1/4	1/2" x 1/4"
				1-7/16–1-1/2	3/8" x 3/16"					2-5/16-2-3/4	5/8" x 5/16"
				1-9/16–1-5/8	3/8" x 3/16"					2-13/16–3	3/4" x 3/8"
	5312-1	6V	Dodge 2517	1/2-9/16	1/8" x 1/16"		5314-1	6V	Dodge 3030	15/16–1-1/4	1/4" x 1/8"
	5312-24	24V	(see pg 133 for	5/8-7/8	3/16" x 3/32"		5314-24	24V	(see pg 133 for	1-5/16-1-3/8	5/16" x 5/32"
			for specific P/N)	15/16–1-1/4	1/4" x 1/8"	TB-1525			for specific P/N)	1-7/16–1-3/4	3/8" x 3/16"
TB-1000				1-5/16–1-3/8	5/16" x 5/32"					1-13/16-2-1/4	1/2" x 1/4"
				1-7/16–1-3/4	3/8" x 3/16"					2-5/16-2-3/4	5/8" x 5/16"
				1-13/16–2-1/4	1/2" x 1/4"					2-13/16-3	3/4" x 3/8"
				2-5/16-2-1/2	5/8" x 5/16"						

For replacement parts list and exploded view drawing, see page 65.

Note: All dimensions are nominal unless otherwise noted.

TB Series – Basic Tension Brakes

Dimensions

TB-1525

inches (mm)

	Α	В	C	D	E	F	G	Н	I	J	K
Model	Max.		Max.		Dia.			Dia.	Dia.	Dia.	Dia.
TD 1505	4.531	1.750	.562	9.187	6.000	3.000	3.000	15.562	9.500	.609	7.125
ID-1020	(115.09)	(44.45)	(14.27)	(233.35)	(152.40)	(76.2)	(76.2)	(395.27)	(241.30)	(15.47)	(180.98)
	L	М	Ν	0	Р		Q	R	S	Т	U
Model		Min.			Max.						
TR-1525	.093	.062	5/16-18	.921	1.546	9.002	/9.000	3.750	10.343	.358/.338	9.750
10-1525	(2.36)	(1.57)	UNC-3A	(23.39)	(39.27)	(228.65	/228.60)	(95.25)	(262.71)	(9.09/8.59)	(247.65)

See page 133 for specific bushing part numbers.

For replacement parts list and exploded view drawing, see page 65.

Note: All dimensions are nominal unless otherwise noted.

Brake Assemblies and Part Numbers

TB Series – Basic Tension Brakes

tem		T	B-170	Т	B-260	TI	B-425
No.	Description	Qty.	P/N	Qty.	P/N	Qty.	P/N
1	Magnet, O.M.	1		1		1	
	6 Volt		5375-631-010		5365-631-013		5367-631-007
	24 Volt		5375-631-012		5365-631-016		5367-631-008
1-1	Terminal Accessory		_	1	5103-101-002	1	5103-101-002
2	Armature	1	110-0096	1	110-0097	1	110-0098
3	Hub Assembly	1		1		1	
	1/4" Bore		5102-541-002		_		
	5/16" Bore		5102-541-003		—		
	3/8" Bore		5102-541-004		5103-541-002		
	1/2" Bore		—		5103-541-004		5104-541-002
	5/8" Bore		—		5103-541-006		5104-541-004
	3/4" Bore		—		5103-541-008		5104-541-006
	7/8" Bore		—		_		5104-541-007
4	Mounting Accessories	1	5102-101-001	1	5102-101-001	1	5104-101-002

TB-500

Part Numbers

Item			TB-500
No.	Description	Qty.	P/N
1	Bushing Taperlock*	1	180-0116 to 180-0128
2	Hub, Armature	1	5300-541-004
3	Armature	1	110-0047
4	Magnet Mounting Acc.		
	Inside Mounted	2	5102-101-001
	Outside Mounted	1	5300-101-008
5	Drive Pin	3	5300-101-003
6	Magnet		
	6 Volt I.M.	1	5300-631-019
	6 Volt O.M.	1	5300-631-024
	24 Volt I.M.	1	5300-631-040
	24 Volt 0.M.	1	5300-631-051
6-1	Terminal Accessory	1	5311-101-001
7	Conduit Box	1	5200-101-010

* See page 133 for specific shaft sizes and bushing numbers.

Brake Assemblies and Part Numbers

TB Series – Basic Tension Brakes

TB-825, TB-1000, TB-1225, TB-1525

Part Numbers

Item		_	TB-825		TB-1000		TB-1225		TB-1525
No.	Description	Qty.	P/N	Qty.	P/N	Qty.	P/N	Qty.	P/N
1	Bushing Taperlock*	1	180-0131 to 180-0149	1	180-0185 to 180-0217	1	180-0262 to 180-0295	1	180-0262 to 180-0295
2	Hub, Armature	1	540-0394	1	540-0313	1	540-0015	1	540-0314
3	Armature	1	5301-111-019	1	5302-111-021	1	5303-111-011	1	5304-111-005
4	Magnet Mounting Acc.								
	Inside Mounting	1	5321-101-001	1	5321-101-001	1	5321-101-001	2	5321-101-001
5	Drive Pin & Retainer	3	5301-101-001	3	5301-101-001	4	5301-101-001	4	5301-101-001
6	Magnet	1		1		1		1	
	6 Volt I.M.		5311-631-024		5312-631-018		5313-631-017		5314-631-002
	24 Volt I.M.		5311-631-040		5312-631-034		5313-631-031		5314-631-022
6-1	Terminal Accessory	1	5311-101-001	1	5311-101-001	1	5311-101-001	1	5311-101-001
7	Conduit Box	1	5200-101-011	1	5200-101-011	1	5200-101-011	1	5200-101-011

* See page 133 for specific shaft sizes and bushing numbers.

These units, when used with the correct Warner Electric conduit box, meet the standards of UL-508 and are listed under the guide card #NMTR, file #59164 and are CSA Certified under file #LR11543.

Electric Brakes and Clutches

ATT Series – Advanced Technology Brakes and Clutches

Advanced Technology – A new design concept!

Warner Electric's ATT Series clutches and brakes are rugged and durable.

Besides providing the ultimate in long life and durability, the ATT units are easily repairable... and, for the first time, mounting a standard sheave, pulley or sprocket to the clutch is a snap.

AT Clutches and Brakes are completely assembled at the factory and have been specifically designed to match the torque ratings of standard motors, reducers, and other power transmission components. Easy to select and easy to install.

Features:

ATT Tension Clutches and Brakes

Ideal for intermediate range applications

- Both brake and clutch models for winders and unwinders
- .284 to .9 thermal horsepower capacity
- Brake wear faces replaceable on the shaft for limited downtime
- Full range of control options. See pages 38-39.

Unit Size	Maximum RPM	Continuous ¹ Dynamic Torque	Overcurrent E-Stop Torque
ATT Brakes			
ATTB-25	3600	8 lb.ft.	15 lb.ft
ATTB-55	3600	15 lb.ft	21 lb.ft
ATTB-115	3600	62 lb.ft.	83 lb.ft.
ATT Clutches			
ATTC-25	3600	7 lb.ft.	*2
ATTC-55	3600	12 lb.ft.	*
ATTC-115	3600	41 lb.ft.	*

Notes

1. Dynamic torque is constant over a speed range of 0–600 RPM

2. Overcurrent is not used on clutch applications for tensioning

ATT Series – Advanced Technology Brakes and Clutches

Special Coil Designs

High temperature coil wire improves durability in the face of high temperature environments and high cycle rates or high inertia cycling that generate large amounts of heat. High temperature Teflon leads are very resistant to accidental abrasion and cutting.

Replaceable Friction Discs

Friction disc is designed as separate assembly from clutch rotor or brake magnet, allowing for replacement of the wear surface without the expense of replacing other valuable unit components. Provides superior wear life with reduced engagement noise level.

Advanced Technology Tension Clutches and Brakes

- Ideal for intermediate range applications
- Both brake and clutch models for winders and unwinders
- .284 to .9 thermal horsepower capacity
- Wear faces replaceable on the shaft for limited downtime
- Full range of control options

Complete Control Capability

Optional Accessories

Warner Electric offers a number of optional accessories as well as rebuild kits, which may make an ATT clutch or brake easier to apply to your machine. See pages 38-39 for controls.

		Clutch	Repai	ir Kits
Unit	Model No.	Restraining Strap	Friction Face Replacement	Rebuild
Clutch	ATTC-25 ATTC-55 ATTC-115	5162-101-004 5162-101-004 5163-101-004	5161-101-008 5162-101-008 5163-101-008	5161-101-009 5162-101-009 5163-101-009
Brake	ATTB-25 ATTB-55 ATTB-115		5161-101-008 5162-101-008 5163-101-008	

Bore Sizes/Part Numbers

		24 VD	C	90 VD()
Size (Inch)		Clutch (ATTC)	Brake (ATTB)	Clutch (ATTC)	Brake (ATTB)
	1/2"	5161-271-021	5191-6	5161-271-025	5191-10
ATT OF	5/8"	5161-271-022	5191-7	5161-271-026	5191-11
AT 1-20	3/4"	5161-271-023	5191-8	5161-271-027	5191-12
	7/8"	5161-271-024	5191-9	5161-271-028	5191-13
	3/4"	5162-271-021	5192-6	5162-271-025	5192-10
ATT CC	7/8"	5162-271-022	5192-7	5162-271-026	5192-11
ATT-55	1"	5162-271-023	5192-8	5162-271-027	5192-12
	1-1/8"	5162-271-024	5192-9	5162-271-028	5192-13
	1-1/8"	5163-271-021	5193-6	5163-271-025	5193-10
ATT 115	1-1/4"	5163-271-022	5193-7	5163-271-026	5193-11
AI 1-115	1-3/8"	5163-271-023	5193-8	5163-271-027	5193-12
	1-1/2"	5163-271-024	5193-9	5163-271-028	5193-13

ATT Series – Advanced Technology Brakes and Clutches

ATTB Brake

Specifications

			Mechanical Data	Electrical Data							
		Total Max Weight Speed I		Inertia WR ²	Resis (oh	Resistance (ohms)		rent eres)	Power (watts)		
Unit	Model No.	(lbs.)	(RPM)	(lb.ft.2)	24 VDC	90VDC	24 VDC	90VDC	24 VDC	90VDC	
	ATTB-25	7	3600	0.038	20.2	290	1.19	0.31	28.6	27.9	
Brake	ATTB-55	15	3600	0.126	19.6	230	1.22	0.39	29.4	35.2	
	ATTB-115	24	3600	0.383	16.5	182	1.46	1.50	34.9	44.6	

ATT Series – Advanced Technology Brakes and Clutches

Customer shall maintain:

1. Squareness of brake mounting face with armature hub shaft within .006 T.I.R.

2. Concentricity of brake mounting pilot diameter with armature hub shaft within .010 T.I.R.

Shaft Bo	re and									
Keyway	Keyway Dimensions			Unit	Bore	Key				
			ATTB-55	1.0025	25.46	1/4 Sq.	inches (mm)			
Model	Unit Bore	Key		1.0005	25.41			Α	В	C
ATTB-25	<u>.5025</u> (12.76)	1/8 Sq.	ATTB-55	1.1275	28.64	1/4 Sq.		Mov		Min
	.5005 (12.71)		ATTB-115	1.1255	28.59		Medal	NidX.	May	NIIII. Die
ATTB-25	<u>.6275</u> (<u>15.94</u> .6255 (15.89	3/16 Sq.	ATTB-115	1.2525 1.2505	31.81 31.76	1/4 Sq.	ATTB-25	4.822	2.730	.264
ATTB-25 ATTB-55	<u>.7525</u> .7505 (19.06)	3/16 Sq.	ATTB-115	1.7775 1.3755	34.99 34.94	5/16 Sq.	ATTB-55	(122.46) 6.271 (150.28)	3.010	.330
ATTB-25 ATTB-55	<u>.8775</u> (22.29) .8755 (22.24)	3/16 Sq.	ATTB-115	1.5025 1.5005	38.16 38.11	3/8 Sq.	ATTB-115	7.906	(77.97) 3.625 (12.07)	.330 (8.38)

inches (mm)

	D	E	F	G	H Pilot	J	L	М	Р
Model	Max.	Nom.	Max.	Dia.	Dia.	Nom.	Max.	Nom.	Max.
ATTB-25	1.347	4.748	3.767	5.250	5.625/5.623	1.544	.225	3.586	2.080
	(34.21)	(120.60)	(95.68)	(133.35)	(142.87/142.82)	(39.22)	(5.71)	(91.08)	(52.83)
ATTB-55	1.770	5.37	3.767	6.875	7.375/7.373	1.544	.491	4.208	3.105
	(44.96)	(136.40)	(95.68)	(174.62)	(187.33/187.27)	(39.22)	(12.47)	(106.88)	(78.87)
ATTB-115	2.152	6.278	3.767	8.500	9.000/8.998	1.544	.463	5.116	3.105
	(54.66)	(159.46)	(95.68)	(215.90)	(228.60/228.55)	(39.22)	(11.76)	(129.95)	(78.87)

For replacement parts list and exploded view drawing, see page 72.

ATT Series – Advanced Technology Brakes and Clutches

ATTC Clutch

replaceable without disassembly of unit in most applications.

Easily visible friction disc indicates when replacement is necessary.

Specifications

		Mechanical Data		Electrical Data					
	Total	Max	Inertia	24 VDC					
Model No.	Weight (Ibs.)	Speed (RPM)	WR ² (lb.ft. ²)	Resistance (ohms)	Current (amperes)	Power (watts)			
ATTC-25	8	3600	0.048	20.6	1.16	28.0			
ATTC-55	18	3600	0.173	19.6	1.22	29.4			
ATTC-115	28	3600	0.483	16.5	1.46	34.9			

Dimensions

inches (mm)

· ·	,												
	A Max.	В	C	D Nom.	E	F	G	н	J Max	K	L	М	т
Model	Dia.	Max.	Nom.	Dia.	Max.	Max.	Max.	Max.	Dia.	Max.	Max.	Max.	Nom.
ATTC-25	3.60 (91.44)	4.39 (111.51)	2.375 (60.33)	1.080 (27.43)	4.748 (120.60)	3.767 (95.68)	3.282 (83.36)	5.11 (129.79)	4.822 (122.49)	1.68 (42.67)	1.003/.991 (25.48/25.17)	.715/.703 (18.16/17.86)	.375 (9.53)
ATTC-55	3.95 (100.33)	4.935 (125.35)	2.925 (74.30)	1.40 (35.56)	5.182 (131.62)	3.767 (95.68)	4.032 (102.41)	5.11 (129.79)	6.275 (159.39)	1.817 (46.15)	1.113/1.101 (28.27/27.97)	_	.375 (9.53)
ATTC-115	5.254 (133.45)	5.977 (151.82)	3.102 (78.79)	1.86 (47.24)	6.089 (154.66)	3.767 (95.68)	4.246 (107.85)	10.11 (256.79)	7.906 (200.81)	2.467 (62.66)	1.539/1.523 (39.09/38.68)	—	.375 (9.53)

For replacement parts list and exploded view drawing, see page 73.

ATT Series – Advanced Technology Brakes and Clutches

Dimensions

	Bore-to-Size data drawing for pulley, sheaves, and sprockets. See Bore-to-Size data below.
Detail View	1/4-20 UNC thru. (2) Jackscrew Holes on X dia.
Bore-to-size Requirements	

inches (mm)

Shaft	Во	re a	and	
Keyw	ay I	Dim	nens	ions

Model

ATTC-25

ATTC-25

ATTC-25

ATTC-55

ATTC-25

ATTC-55

Unit Bore

.5025

.5005

.6275

.6255

.7525

.7505

.8775

.8755

			Model	Unit	Bore	Key
ons ore	Кеу		ATTC-55	<u>1.0025</u> 1.0005	$\begin{pmatrix} \underline{25.46} \\ 25.41 \end{pmatrix}$	1/4 Sq.
$\left(\frac{12.76}{12.71}\right)$	1/8 Sq.	_	ATTC-55 ATTC-115	<u>1.1275</u> 1.1255	$\begin{pmatrix} \underline{28.64} \\ 28.59 \end{pmatrix}$	1/4 Sq.
$\left(\frac{15.94}{15.89}\right)$	3/16 Sq.	-	ATTC-115	<u>1.2525</u> 1.2505	$\begin{pmatrix} \underline{31.71}\\ 31.76 \end{pmatrix}$	1/4 Sq.
$\left(\frac{19.11}{19.06}\right)$	3/16 Sq.	-	ACCT-115	<u>1.3775</u> 1.3755	$\begin{pmatrix} \underline{34.99} \\ 34.94 \end{pmatrix}$	5/16 Sq.
$\begin{pmatrix} \underline{22.29} \\ 22.24 \end{pmatrix}$	3/16 Sq.	_	ATTC-115	<u>1.5025</u> 1.5005	$\begin{pmatrix} \underline{38.16} \\ 38.11 \end{pmatrix}$	3/8 Sq.

U V W Х 0 Q Ν R S No. of Thread Max. Bolt Bore Keyway Keyway Bolt Width Model Holes Size Depth Circle Nom. Nom. Min. Min. Dia. Height Circle .500 3.586 .752 .279 2.502/2.500 2.601/2.591 .1905/.1885 3.00 ATTC-25 3 1/4-20 .500 3.00 (12.7) (91.08) (19.08) (7.09) (63.55/63.50)(66.06/65.81) (4.84/4.79)(76.20) .500 4.156 .722 .265 3.002/3.000 3.099/3.089 .1905/.1885 3.50 ATTC-55 4 1/4-20 .635 3.50 (12.7) (105.56)(18.34) (6.73) (76.25/76.20)(78.71/78.46) (4.84/4.79)(88.90) .378/.376 4.50 .500 4.927 .504 .265 4.002/4.000 4.127/4.117 ATTC-115 4 5/16-18 .830 4.75 (12.7) (125.15)(12.80)(6.73) (101.65/101.60) (104.83/104.57) (9.60/9.55)(114.30)

For replacement parts list and exploded view drawing, see page 73.

Note: All dimensions are nominal unless otherwise noted.

Bore-to-Size Data

Brake Assemblies and Part Numbers

ATT Series – Advanced Technology Brakes

ATTB-25, ATTB-55, ATTB-115

Brake Asse	Brake Assemblies											
Unit Size	Voltage	Part No.										
ATTB-25-1/2	24	5191-6										
ATTB-25-1/2	90	5191-10										
ATTB-25-5/8	24	5191-7										
ATTB-25-5/8	90	5191-11										
ATTB-25-3/4	24	5191-8										
ATTB-25-3/4	90	5191-12										
ATTB-25-7/8	24	5191-9										
ATTB-25-7/8	90	5191-13										
ATTB-55-3/4	24	5192-6										
ATTB-55-3/4	90	5192-10										
ATTB-55-7/8	24	5192-7										
ATTB-55-7/8	90	5192-11										
ATTB-55-1	24	5192-8										
ATTB-55-1	90	5192-12										
ATTB-55-1-1/8	24	5192-9										
ATTB-55-1-1/8	90	5192-13										
ATTB-115-1-1/8	24	5193-6										
ATTB-115-1-1/8	90	5193-10										
ATTB-115-1-1/4	24	5193-7										
ATTB-115-1-1/4	90	5193-11										
ATTB-115-1-3/8	24	5193-8										
ATTB-115-1-3/8	90	5193-12										
ATTB-115-1-1/2	24	5193-9										
ATTB-115-1-1/2	90	5193-13										

Part Numbers

Item		AT	TB-25	A	TB-55	AT	TB-115	Item	l	AT	TB-25	AT	TB-55	AT	TB-115
No.	Description	Qty.	Part No.	Qty.	Part No.	Qty.	Part No.	No.	Description	Qty.	Part No.	Qty.	Part No.	Qty.	Part No.
1	Armature Hub	1	540-0908	1	540-0851	1	540-0864		7/8" Bore	_	5191-541-005	_	5192-541-003	_	-
2-1	Armature	1	110-0220	1	110-0218	1	110-0223		1" Bore	_	-	_	5192-541-004	_	-
2-2	Facing Assem.	1	5191-445-003	1	5192-445-003	1	5193-445-003		1-1/8" Bore	-	-	-	5192-541-005	-	5193-541-002
2-3	Screw	6	797-1389	8	797-1389	8	797-1389		1-1/4" Bore	-	-	-	-	-	5193-541-003
2-4	Screw	4	797-1020	6	797-1387	6	797-1174		1-3/8" Bore	-	-	-		-	5193-541-004
2-5	Lockwasher	-	-	6	950-0355	6	950-0355		1-1/2" Bore	-	-	-	-	-	5193-541-005
2-6	Flatwasher	-	-	2	950-0023	2	950-0023	5	Mtg. Acc'y.	1	5191-101-007	1	5192-101-007	1	5192-101-007
3	Magnet Assem.	1	-	1	-	1	-								
	24 Volts D.C.	-	5191-631-007	-	5192-631-007	-	5193-631-014	Option	al Accessory Item	S					
	90 Volts D.C.	-	5191-631-008	-	5192-631-008	-	5193-631-015	6	Conduit Box	1	5162-101-002	1	5162-101-002	1	5162-101-002
4	Splined Hub	1	-	1	-	1	-	Kit Ite	ms						
	1/2" Bore	-	5191-541-002	-	-	-	-	7	Friction Face						
	5/8" Bore	-	5191-541-003	-	-	-	-		Replacement Kit	1	5161-101-008	1	5162-101-008	1	5163-101-008
	3/4" Bore	-	5191-541-004	-	5192-541-002	-	-		(includes items	2-1, 2	-2, 2-3, 2-4, 2-5,	2-6)			

Clutch Assemblies and Part Numbers

ATT Series – Advanced Technology Clutches

Clutch Assemblies

Unit Size	Voltage	Part No.
ATTC-25-1/2	24	5161-271-021
ATTC-25-1/2	90	5161-271-025
ATTC-25-5/8	24	5161-271-022
ATTC-25-5/8	90	5161-271-026
ATTC-25-3/4	24	5161-271-023
ATTC-25-3/4	90	5161-271-027
ATTC-25-7/8	24	5161-271-024
ATTC-25-7/8	90	5161-271-028
ATTC-55-3/4	24	5162-271-021
ATTC-55-3/4	90	5162-271-025
ATTC-55-7/8	24	5162-271-022
ATTC-55-7/8	90	5162-271-026
ATTC-55-1	24	5162-271-023
ATTC-55-1	90	5162-271-027
ATTC-55-1-1/8	24	5162-271-024
ATTC-55-1-1/8	90	5162-271-028
ATTC-115-1-1/8	24	5163-271-021
ATTC-115-1-1/8	90	5163-271-025
ATTC-115-1-1/4	24	5163-271-022
ATTC-115-1-1/4	90	5163-271-026
ATTC-115-1-3/8	24	5163-271-023
ATTC-115-1-3/8	90	5163-271-027
ATTC-115-1-1/2	24	5163-271-024
ATTC-115-1-1/2	90	5163-271-028

Part Numbers

Item		AT	TC-25		ATTC-55	ATTC-115	Item		AT	TC-25	A	TTC-55	A	TTC-115
No.	Description	Qty.	Part No.	Qty.	Part No.	Qty. Part No.	No.	Description	Qty.	Part No.	Qty.	Part No.	Qty.	Part No.
1 2 3 4 5 6 7	Retaining Ring Armature Hub Retaining Ring Retaining Ring Bearing Spacer Splined Hub 1/2" Bore 5/8" Bore 3/4" Bore 7/8" Bore	1 1 1 2 1 1	748-0734 540-0907 748-0732 748-0731 166-0278 807-0119 	1 1 1 2 1 1 -	748-0725 540-0852 748-0726 748-0728 166-0277 807-1061 - - 540-1501 540-1502	1 748-0738 1 540-0863 1 748-0737 1 748-0736 2 166-0279 1 807-1063 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	* [†] 10-1 * [†] 10-2 *11 12 *13 14 15 16	Bearing Field Assembly 90 Volts D.C. 24 Volts D.C. Retaining Ring Adapter Screw Lockwasher	1 6 1 1 1 - -	5191-445-003 797-1389 166-0283 5161-451-003 5161-451-004 748-0018 - - -	1 8 1 1 1 - -	5192-445-003 797-1389 166-0284 5162-451-003 5162-451-004 748-0727 - - - -	1 8 1 1 1 2 4 4	5193-445-003 797-1389 166-0279 5163-451-003 5163-451-004 748-0737 104-0300 797-1396 950-0102
	1-1/8" Bore 1-1/8" Bore 1-1/4" Bore 1-3/8" Bore 1-1/2" Bore	- - -	- - -	- -	540-1503 540-1504 - - -	 540-0857 540-0858 540-0859 540-0860	17 19 20	Conduit Box Restraining Arm Assembly Timing Belt and V	1 1 Belt P	5162-101-002 5162-101-004 Julleys: Consult F	1 1 actory	5162-101-002 5162-101-004 /.	1	5162-101-002 5162-101-004
8 *†9-1 *†9-2 *†9-3 *9-4 *10	Setscrew Armature Screw Lockwasher Flatwasher Rotor	2 1 4 - 1	797-1393 110-0220 797-1519 – _ 5161-751-002	2 1 6 2 1	797-1386 110-0218 797-1462 950-0355 950-0023 5162-751-002	2 797-1395 1 110-0223 6 797-1463 6 950-0355 2 950-0023 1 5163-751-002	Kit Iter * † Note:	ms Clutch Rebuild Kit (includes items 9- Friction Service Kir In some versions face.	1 -1, 9-3 t 1 of th	5161-101-012 2, 9-3, 9-4, 10, 1 5161-101-008 is product, item	1 1, 13 1 10 c	5162-101-012 3) 5162-101-008 onsists of a roto	1 1 or and	5163-101-012 5163-101-008 a replaceable

MTB Series - Modular Tension Brakes

One of the keys to the Warner Electric tensioning system is the Electro Disc tension brake. Electro Disc brake systems are capable of continuous slip from full roll to core diameter while providing outstandingly consistent and accurate control of unwind tension throughout the process. Electro Disc brakes operate smoothly and quietly. They respond instantly for emergency stops. Wear life is remarkable. Electronic control systems are easily interfaced with Warner Electric controls. Selection of the right brake for virtually any web processing application, from film to boxboard, is made possible through a building-block modular design.

Simple Maintenance

Rugged design eliminates most moving parts. No diaphragms to break down. Asbestos-free brake pads are quickly and easily replaced. Brake wear does not affect torque as with some other types of brakes.

Easy Installation

Electro Disc tension brakes fit within tight space restrictions. Bushings adapt to most standard and metric shafts. Electrical installation replaces complex pneumatic plumbing, valves and compressors.

Long Life, High Heat Dissipation

A replaceable face armature disc provides extremely long life and maximum heat dissipation. Standard armature discs can be mounted singly or in tandem as shown here to increase the heat dissipation and torque capability.

Accurate, Consistent Control

The responsiveness of electric brakes coupled with specially designed controls provides accurate tensioning from beginning to end of roll, even during emergency stops and flying splices.

Brake Modularity

With one to sixteen magnets and single or double armature discs, Electro Disc tension brakes offer torque control and continuous slip capacity to meet a broad spectrum of requirements for virtually any web processing application.

Four armature sizes

Design

The Electro Disc design is a proven concept, featuring a simple, yet powerful tension brake ... easy-to-control, smooth, quiet and accurate. The speed of response and controllability, especially near zero tension, far exceeds that of other braking technologies.

Simple. Powerful. Controllable.

The electromagnetic principle, as applied to the Electro Disc tension brake, results in a brake design that features outstanding control from zero torque to the maximum limits of the brake. Complex moving parts are eliminated.

Smooth Operation with Minimal Maintenance

The friction pads are made of a unique composite of asbestos-free friction materials specially designed to produce smooth, powerful, yet quiet engagement between the magnet and armature discs. Since the replaceable friction pads and armature disc are the only parts which receive regular wear, the electromagnets can be reused indefinitely. An indicator notch on the friction pad, as well as an optional electric wear indicator, makes routine checking for remaining wear life quick and easy.

MTB Series – Modular Tension Brakes

MTB-II ... the second generation 1% Electromagnets Magnet Carrier Wear Indicator Notch Armature Disc Replaceable Brake Pads 6 0 C

Single disc, 2 magnets

Dual disc, 12 magnets

MTB Series – Modular Tension Brakes

Principle of Operation

Warner Electric tension brakes operate on the electromagnetic principle. The brake's two basic parts, an electromagnet and an armature disc, pull into contact as power is applied. At the center of the Warner Electric tension brake magnet is the electric coil, consisting of numerous layers of tightly wound wire, which gives Warner Electric brakes their torque capability. By simply increasing or decreasing the current to the electric coil, proportionately more or less braking torque will be generated.

MTB-II...The Second Generation

The ED magnet has been redesigned following years of engineering tests and evaluation. The result is a unique design providing more than double the life of the previous Electro Disc brakes ... without any loss in smoothness or controllability.

New armature design

New aluminum armature carriers for 10", 13" and 15" systems provide inertial reduction up to 40%, allowing improved tension control as high speed machines accelerate to core. The radial blower design improves air flow and cooling. Systems run cooler and last longer.

New friction system The friction system features three

- Manual matching important benefits:A new, long wearing friction pad material.
- A new, improved balance between the wear rate of the magnetic poles and the friction material.
- A replaceable face friction pad for fast, easy maintenance.

New pole geometry

The geometry of the magnetic poles has been redesigned to minimize the "leading edge wear" common to all pin mounted friction brakes. Magnet mounting holes do not extend through the face for freer, axial movement.

New electronic wear indicator option

An optional, electronic wear indicator is imbedded into the magnets to aid in planning maintenance requirements. An indicator on the Warner Electric control illuminates at the point where 15% of brake life still remains.

MTB Series – Modular Tension Brakes

Emergency Stop Torque Curves

Note: The following curves are for emergency stop torques. For normal running dynamic torque, multiply the emergency stop torque value by .54. Electro Disc – 10"*
Electro Disc – 13"*

MTB Series – Modular Tension Brakes

Model number designation

Single Disc, 2 Magnets

Dual Discs, 4 Magnets

Dual Discs, 12 Magnets

Specifications

Model	No. of Discs	No. of Magnets	Resistance @20°C Ohms ¹	Current Amps	Watts ¹	Max. Allowable Disc Speed RPM
10-0-1	1	1	69.10	0.35	8.33	3600
10-0-2	1	2	34.55	0.69	16.67	3600
10-0-3	1	3	23.03	1.04	25.01	3600
10-10-2	2	2	34.55	0.69	16.67	3600
10-10-4	2	4	17.28	1.39	33.33	3600
10-10-6	2	6	11.52	2.08	50.0	3600
13-0-1	1	1	69.10	0.35	8.33	2500
13-0-2	1	2	34.55	0.69	16.67	2500
13-0-3	1	3	23.03	1.04	25.01	2500
13-0-4	1	4	17.28	1.39	33.33	2500
13-0-5	1	5	13.82	1.74	41.68	2500
13-13-2	2	2	34.55	0.69	16.67	2500
13-13-4	2	4	17.28	1.39	33.33	2500
13-13-6	2	6	11.52	2.08	50.0	2500
13-13-8	2	8	8.64	2.78	66.67	2500
13-13-10	2	10	6.91	3.47	83.36	2500
15-0-1	1	1	69.10	0.35	8.33	2500
15-0-2	1	2	34.55	0.69	16.67	2500
15-0-3	1	3	23.03	1.04	25.01	2500
15-0-4	1	4	17.28	1.39	33.33	2500
15-0-5	1	5	13.82	1.74	41.68	2500
15-0-6	1	6	11.52	2.08	50.0	2500
15-15-2	2	2	34.55	0.69	16.67	2500
15-15-4	2	4	17.28	1.39	33.33	2500
15-15-6	2	6	11.52	2.08	50.0	2500
15-15-8	2	8	8.64	2.78	66.67	2500
15-15-10	2	10	6.91	3.47	83.36	2500
15-15-12	2	12	5.76	4.17	100.0	2500
20-0-1	1	1	69.10	0.35	8.33	1600
20-0-2	1	2	34.55	0.69	16.67	1600
20-0-3	1	3	23.03	1.04	25.01	1600
20-0-4	1	4	17.28	1.39	33.33	1600
20-0-5	1	5	13.82	1.74	41.68	1600
20-0-6	1	6	11.52	2.08	50.0	1600
20-0-7	1	7	9.87	2.43	58.36	1600
20-0-8	1	8	8.64	2.78	66.67	1600
20-20-2	2	2	34.55	0.69	16.67	1600
20-20-4	2	4	17.28	1.39	33.3	1600
20-20-6	2	6	11.52	2.08	50.0	1600
20-20-8	2	8	8.64	2.78	66.67	1600
20-20-10	2	10	6.91	3.47	83.36	1600
20-20-12	2	12	5.76	4.17	100.0	1600
20-20-14	2	14	4.94	4.86	116.60	1600
20-20-16	2	16	4.32	5.56	133.33	1600

Notes: 1. Electrical data based on magnets connected in parallel.

Armature Data

Brake Size	No. of Armatures	Total Brake Inertia (lb.ft.²)	Armature and Hub* Total Weight (lbs.)					
10"	1	0.9	9.4					
10	2	1.4	14.6					
13"	1	2.9	16.6					
	2	4.6	25.0					
1 ۳ %	1	4.6	22.3					
15	2	7.5	32.5					
20"	1	20.0	70.0					
	2	36.0	105.0					
*Armature, hub and bushing rotate								

Torque Ratings per Magnet

Dynamic Torque* (lb.ft.)	Drag Torque (lb.ft.)	E-Stop** (lb.ft.)
28.5	.21	62
30	.32	64
33	.37	65
37	.51	70
	Dynamic Torque* (lb.ft.) 28.5 30 33 33 37	Dynamic Torque* Drag Torque (lb.ft.) 28.5 .21 30 .32 33 .37 37 .51

* Per magnet @ 50 rpm; 270 ma coil current

** Per magnet @ 50 rpm; 500 ma coil current

MTB Series – Modular Tension Brakes

Modular Design ... tailored to meet your requirements

To select the proper size Electro Disc tension brake, it is important to understand that the brakes are fully modular. This feature enables matching requirements for heat dissipation and emergency stopping torque to the tension brake configuration that optimizes these features.

Selection

The easy-to-use selection charts on page 77 specifies a particular modular combination as listed in the accompanying chart. (See page 78 for selection of basic tension brakes.)

Determining two factors are all that's required.

1. Diameter

Basically heat dissipation capacity is directly proportional to the diameter of the disc.

2. Number of magnets

Torque capacity is proportional to the number of magnets. See page 77 for torque and heat dissipation sizing to meet the specific requirements of your application.

Mounting Configurations

Flexible Mounting

Thrust bearings, side loading, and special supports are a thing of the past!

Universal Mounting Bracket

With addition of a simple "L" shaped bracket (Customer supplied), the universal mount provides a perfectly easy retrofit on older machines.

Bulk Head Mounting Bracket

Use of the bulkhead mount reduces the overall diameter to allow mounting in more constricted or enclosed locations.

Direct (Free) Mounting

For the Machine Builder or retrofitter, the free mount provides the simplest, least expensive option with low profile and diameter advantages. Mounting directly to the side frame of the machine offers all support necessary for performance requirements.

MTB Series – Modular Tension Brakes

MTB-II Dimensions

... with Universal Mounting Brackets

inches (mm)

Armature	Α	В	C BORE		D	E	F	G	
Size		Max.	Stock*	Bushing	Browning	Max.	Max.	Max.	Degree
10"	8.625 ± .020 (219.0 ± 0.5)	9.500 (241.3)	1.750 (44.45)	.500–1.750 (14.0–42.0)	P-1	10.020 (254.5)	.479 (12.2)	3.550 (88.9)	180
13"	10.187 ± .020 (258.7 ± 0.5)	11.000 (279.4)	3.375 (85.73)	1.125–3.750 (28.0–95.0)	R-1	13.520 (343.4)	1.219 (31.0)	5.687 (144.4)	108 & 144
15"	11.125 ± .020 (282.6 ± 0.5)	12.000 (304.8)	3.375 (85.73)	1.125–3.750 (28.0–95.0)	R-1	15.325 (389.3)	1.219 (31.0)	6.875 (174.6)	120
20"	13.470 ± .020 (340.4 ± 0.5)	14.250 (362.0)	_	2.375–5.500 —	U-0	20.020 (508.5)	2.720 (69.1)	4.380 (111.3)	_

* Stock bore is straight bore for use with Trantorque bushing.

For replacement parts list and exploded view drawing, see page 84.

** Width dimension is the same for single or dual magnet carriers. (Dual magnet carrier shown.)

Consult factory for dimensional information on MTB-I.

MTB Series – Modular Tension Brakes

7.250 (184.2) MAX.** 7.250 (184.2) MAX.** 8.750 .003 _1.070 MIN. (27.2) (222.2 .762) MOUNTING 4.375 .015 3/4-10 UNC-2A SPACER (111.1 .381) THREAD (2) 3.442 (87.4) PURATU M . Million Æ В 3.442 RADIUS O (87.4) 3.125 0 *`*@ A (79.4) .200 .200 (5.08) F đ SET-UP SET-UP (BOTH SIDES) F . F đ Ò 0 0 Ċ C E 1.322 E ≁ BORE 1.644 (33.6) D (41.8) Nom Nom DIA. Dual Armature Single Armature G DEG.

MTB-II Dimensions

... with Bulk Head Mounting Brackets

inches (mm)

Armature	Α	В		C BORE		D	E	F	G
Size		Max.	Stock*	Bushing	Browning	Max.	Max.	Max.	Degree
10"	5.260 ± .020 (133.6 ± 0.5)	7.750 (196.9)	1.750 (44.45)	.500–1.750 (14.0–42.0)	P-1	10.020 (254.5)	.479 (12.2)	3.55 (88.9)	180
13"	6.822 ± .020 (173.3 ± 0.5)	9.300 (236.2)	3.375 (85.73)	1.125–3.750 (28.0–95.0)	R-1	13.520 (343.4)	1.219 (31.0)	5.687 (144.4)	108 & 144
15"	7.760 ± .020 (197.1 ± 0.5)	10.230 (259.9)	3.375 (85.73)	1.125–3.750 (28.0–95.0)	R-1	15.325 (389.3)	1.219 (31.0)	6.875 (174.6)	120
20"	10.250 ± .020 (260.4 ± 0.5)	12.500 (317.5)	_	2.375–5.500 —	U-0	20.020 (508.5)	2.720 (69.1)	4.380 (111.3)	_

* Stock bore is straight bore for use with Trantorque bushing.

For replacement parts list and exploded view drawing, see page 84.

** Width dimension is the same for single or dual magnet carriers. (Dual magnet carrier shown.)

Consult factory for dimensional information on MTB-I.

MTB Series – Modular Tension Brakes

MTB-II Dimensions

... with Direct Mounting

Male Pins

Female Pins

inches (mm)

Armature	Α		C BORE		D	E	F	G
Size		Stock*	Bushing	Browning	Max.	Max.	Max.	Degree
10"	3.350 ± .020 (85.1 ± 0.5)	1.750 (44.45)	.500–1.750 (14.0–42.0)	P-1	10.020 (254.5)	.479 (12.2)	3.550 (88.9)	120
13"	5.215 ± .020 (132.5 ± 0.5)	3.375 (85.73)	1.125–3.750 (28.0–95.0)	R-1	13.520 (343.4)	1.219 (31.0)	5.687 (144.4)	72
15"	5.850 ± .020 (148.6 ± 0.5)	3.375 (85.73)	1.125–3.750 (28.0–95.0)	R-1	15.325 (389.3)	1.219 (31.0)	6.875 (174.6)	60
20"	8.125 ± .040 (206.4 ± 1.0)		2.375–5.500	U-0	20.020 (508.5)	2.720 (69.1)	_	—

* Stock bore is straight bore for use with Trantorque bushing.

For replacement parts list and exploded view drawing, see page 84.

Consult factory for dimensional information on MTB-I.

MTB Series – Modular Tension Brakes

Retrofit/Upgrade of MTB to MTB-II

New MTB-II magnets and armature carriers are designed to easily retrofit and upgrade existing MTB applications.

1. Magnets only - Existing applications can extend the life of the friction system by installing MTB-II components.

MTB Magnet Weight 3 lb. 4.5 oz. each Magnet

If presentl	y using	MTB MAGNETS	Upgrade with MTB-II MAGNETS						
Magnet	52	16-631-004	Standard or	Magnet	t 5216-631-010				
			Magnet w electronic	vith ; wear i	5216-631-009 ndicator				
that shou	ıld go w	vith	that should	d go with	7				
Magnet Ca	arriers								
Dual	10"	5216-295-002	Dual	10"	5216-295-005				
	13"	None		13"	5216-295-006				
15"	8 20"	5216-295-001	15	" & 20"	5216-295-007				
Single	All	5216-295-003	Single	All	5216-295-004				
OR (if Free Mounting)			OR (if Free Mounting)			M			
Free Mour	nt 52	16-101-010	Free Mou	nt	5216-101-029				

Pins 5216-101-008 Pins 5216-101-030

Note: a) The same number of magnets should be used unless additional considerations exist (consult factory).

b) MTB-II Free Mount Pins (5216-101-029) may replace the pins in the MTB carriers to convert them into MTB-II carriers.

2. Aluminum Armature Carriers - Existing applications may be upgraded to aluminum armature carriers with the benefit of reducing armature inertia. This may be done with or without upgrading the magnets.

If presently using... MTB ARMATURE & HUB Upgrade with... MTB-II ARMATURE & CARRIER

10" Armatur	re 5216-111-001	10" Armature	5216-101-025		•
that should	d go with	that should go with			THE .
10" Hub	540-0842	Tapered Bore Carrie OR Straight Bore Carrie	er 295-0021		N . 0
15" Armatur	re 5216-111-003	15" Armature	5216-101-024	H	
that should	d go with	that should go with			
15" Hub	540-1382	Tapered Bore Carrie OR Straight Bore Carrie	er 295-0019		

Note: Due to the orientation of the tapered bore in the integral hub of the MTB-II armature carrier, some existing MTB applications may not readily retrofit to the new assembly (consult factory).

Brake Assemblies and Part Numbers

MTB Series – Modular Tension Brakes

Iten	n Description	10" Armature	13" Armature	15" Armature	20" Armature
Arm	atures				
1	Armature Carrier (Bushing Enters from Flush Side of Carrier as Shown)	295-0021	295-0023	295-0019	295-0019
	Armature Carrier Reverse Taper (Bushing Enters from Extended Side of Carrier)	295-0031	295-0030	295-0029	295-0029
	Armature Carrier (Straight Bore)	295-0026	295-0027	295-0028	295-0028
2	Armature (Replaceable Face)	5216-101-025	5216-101-026	5216-101-024	5216-101-033
2a	Armature Mounting Accessory (Included with Armature)	5216-101-023	5216-101-023	5216-101-023	5216-101-032
3	Bushing (Customer Supplied) Taper Bore	Browning P1	Browning R1	Browning R1	Browning R1
	Straight Bore	Use Tranto	rque. Consult Warner	r Electric	_
4	Female Pin Kit (Includes 2 Pins)	5216-101-030	5216-101-030	5216-101-030	5216-101-030
4a	Male Pin Kit (Includes 2 Pins with Nuts and Lockwashers)	5216-101-029	5216-101-029	5216-101-029	5216-101-029
Mag	net Carriers				
5	Single Magnet Carrier Assembly	5216-295-004	5216-295-004	5216-295-004	5216-295-004
6	Dual Magnet Carrier Assembly	5216-295-005	5216-295-006	5216-295-007	5216-295-007
Carr	ier Brackets				
7	Universal Mounting Bracket, Series 10-0, 13-0, & 20-0 (2)	5216-101-020	5216-101-020	5216-101-020	5216-101-020
	Universal Mounting Bracket, Series 10-10, 13-13, & 20-20 (2)	5216-101-021	5216-101-021	5216-101-021	5216-101-021
8	Bulk Head Mounting Bracket (3)	5216-101-022	5216-101-022	5216-101-022	5216-101-022
Mag	nets				
9	Magnet Assembly, Standard	5216-631-010	5216-631-010	5216-631-010	5216-631-010
	Magnetic Assembly, HICO	5216-631-013	5216-631-013	5216-631-013	5216-631-013
9a	Friction Pad, Standard (Replacement Part Only)	5216-101-028	5216-101-028	5216-101-028	5216-101-028
	Friction Pad, HICO (4)	5216-101-031	5216-101-031	5216-101-031	5216-101-031
9b	Preload Spring (1) (Included with Magnets)	808-0008	808-0008	808-0008	808-0008
10	Magnet Assembly with Wear Indicator	5216-631-009	5216-631-009	5216-631-009	5216-631-009
10a	Friction Pad with Wear Indicator (Replacement Part Only)	5216-101-027	5216-101-027	5216-101-027	5216-101-027
(1) Tv	vo of each required for each brake magnet.	Browning is a reg	sistered trademark of	Emerson Electric Co.	
(0) los	lucies and a minu (A. S. C.) and a minute in the surface of the second	T , ,		(T) 0	

(2) Includes magnet carrier (4 & 5) mounting hardware.

(3) Includes magnet mounting hardware, bracket mounting bolts and spacers.

(4) HICO friction pads can be identified by orange paint mark near wear notch.

Trantorque is a registered trademark of Trantorque Corporation.

Brake Assemblies and Part Numbers

Part Numbers

Item	Description	10" Armature	15" Armature	20" Armature
1	Magnet Assembly	5216-631-004	5216-631-004	5216-631-004
1a	Friction Pad (Replacement Part Only)	5216-101-003	5216-101-003	5216-101-003
1b	Preload Spring1	808-0008	808-0008	808-0008
2	Armature (Replaceable Face & Carrier)	5216-111-001	5216-111-003	_
2a	Steel Replacement Face	5216-101-012	5216-101-011	_
3	Dual Magnet Carrier Assembly	5216-295-002	5216-295-001	5216-295-001
3a	Male Pin Only (Includes Nut & Lockwasher)	5216-101-010	5216-101-010	5216-101-010
3b	Female Pin Kit	5216-101-008	5216-101-008	5216-101-008
4	Single Magnet Carrier Assembly	5216-295-003	5216-295-003	5216-295-003
5	Series 10-0, 15-0, & 20-0 Universal Mounting Bracket (2)	5216-101-020	5216-101-020	5216-101-020
	Series 10-10, 15-15, & 20-20 Universal Mounting Bracket (2)	5216-101-021	5216-101-021	5216-101-021
6	Bulk Head Mounting Bracket (3)	5216-101-022	5216-101-022	5216-101-022
7	Hub	540-0842	540-1382	_
8	Series 10-0, 15-0, & 20-0 Armature Mounting Accessory	5216-101-004	5216-101-004	5216-101-018
	Series 10-10, 15-15, & 20-20 Armature Mounting Accessory	5216-101-005	5216-101-005	5216-101-019
9	Bushing (Customer Supplies)	Browning	Browning	Browning
		Type P-1	Type R-1	—

(1) Two of each required for each brake magnet.

(2) Includes magnet carrier (3 & 4) mounting hardware.

(3) Includes magnet mounting hardware, bracket mounting bolts and spacers.Browning is a registered trademark of Emerson Electric Co.

M Series – Permanent Magnet

Fast, precise torque adjustment!

Precision Tork[™] clutches and brakes

Precision Tork units provide constant torque independent of slip speed. They offer excellent overload and jam protection for all drive train components and also provide soft starts with zero slip when a preset torque is reached. Precision Tork permanent magnet clutches and brakes do not require maintenance and provide extremely long life.

Features and Benefits

Fast, precise torque adjustment

- Torque is set with a large knurled adjustment ring.
- Infinite adjustability between minimum and maximum settings. This allows units to be fine tuned to your unique requirement.
- Easy to read graduations.

Torque is constant with respect to speed

- By using the Precision Tork unit, you can solve almost any torque control problem.
- Torque is extremely consistent and smooth at low, as well as high speeds.

No external control or power source

- Simple to install
- Nothing to monitor
- Unaffected by power interruption or power fluctuation
- Safe to use

Dependable performance

- Smallest possible transition from static to dynamic torque. Virtually eliminates the "stick-slip" phenomenon associated with friction devices.
- Long life. The only wearing parts are the ball bearings.
- Extremely accurate. Precision Tork units out-perform all other devices at low RPM.

Versatile mounting: Easy to retrofit

- Clutches are available with hollow bores for mounting on motor shafts or jack shafts.
- Bolt circles allow for fixed mounting, adding a pulley, or stub shaft adapters.
- Brakes are available with solid shaft outputs.

Distributor item

- Off the shelf availability.
- Interchangeable with competitors' products.

Bolt circles on both ends for versatile mounting Torque adjustment ring establishes position of permanent magnets to vary the amount of torque

Specials are our business...

- Special shaft bores and keyways
- Shaft extensions
- System retrofits
- Metric bores and keyways
- Stainless steel construction
- Fixed torgue units

Stainless Steel

MC4D

Long Shaft Extension

Unwind tension control

Brake mounted on shaft of unwind spool or bobbin.

by hysteresis units.

Cycling -

Information required:

Full roll diameter (in.) = 6 in. Core diameter (in.) = 4 in. Average tension (lbs.) = 4 lbs. Velocity (feet per min.) = 100 fpm

How to size:

Average radius (in.) =

$$\frac{\text{Full roll dia. (in.) + Core dia. (in)}}{4}$$
= $\frac{6+4}{4}$ = 2.5 in.

Torque (lb.in.) = Avg. tension (lbs.) x Avg. radius (in.) $= 4 \times 2.5 = 10$ lb.in.

Information required:

Slip RPM = 500 RPM Torque = 8 lb.in. % slip time of total cycle time = 25%

How to size:

*Watts = .0118 x torque (lb.in.) x slip RPM x % slip time = .0118 x 8 x 500 x .25 = 11.8 watts

M Series – Permanent Magnet

Check tension range: Max. tension = Torque (lb.in.) x $\frac{2}{\text{Core dia. (in.)}} = 10 \times \frac{2}{4} = 5 \text{ lbs.}$ Min. tension = Torque (lb.in.) x $\frac{2}{\text{Full roll dia. (in.)}} = 10 \times \frac{2}{6} = 3.3 \text{ lbs.}$ Slip watts = $\frac{\text{Max. tension (lbs.) x velocity (fpm)}}{44.2}$ = 11.3 watts

Select Model MC4

Select an MC4 from the specification chart.

*Note: Consult factory if peak slip watts are extremely high or if duration of slip period is in excess of 1 minute.

Nip roll or pulley tension control

Information required: Pulley or nip roll diameter = 4 in. Tension = 6 lbs. Velocity = 100 fpm

How to size: Torque (lb.in.) = Tension (lbs.) x $\frac{\text{Dia. (in.)}}{2}$ = 6 x $\frac{4}{2}$ = 12 lb.in. Slip watts = $\frac{\text{Tension (lbs.) x velocity (fpm)}}{44.2}$ = $\frac{6 \times 100}{44.2}$ = 13.5 watts

Select Model MC5

Overload protection/Torque limiting/Soft start

Motor horsepower method

Hysteresis clutch provides overload protection.

Material handling Hysteresis clutch can provide overload protection and soft start.

Information required:

Motor HP = 1/2 HP Motor RPM = 1750 RPM **How to size:**

Torque (lb.in.) = $\frac{\text{HP x } 63000}{\text{PD} \text{ s}}$

 $\frac{1/2 \times 63000}{1750} = 18 \text{ lb.in.}$

Select an MC5 from the specification chart.

=

M Series – Permanent Magnet

_

Specifications	Model Size	[Torque	Heat Dissipation (watts)	Inertia (Ibs. sq. in.)	Bending Moment (Ib. in.)	Max. RPM	Weight (Ibs.)	Bore Range/Shaft Dia. (in.)
	MC1.5	1–13 oz. in.	10	0.02	5	3600	10.5 oz.	1/4
	MC2	0.5–22 oz. in	. 10	0.02	5	3600	11 oz.	1/4
	MC2.5	0.5–5.0 lb. in	. 15	0.11	10	1800	1.5	3/8, 1/2
	MC3	0.5–6 lb. in.	18	0.14	10	1800	2.5	5/16, 3/8
	MC4	0.7–10 lb. in	. 22	0.32	10	1800	3.5	3/8, 1/2, 5/8
	MC5	1–30 lb. in.	72	1.72	25	1800	9.5	3/8, 1/2, 5/8, 3/4, 7/8, 1
	MC5.5	1–50 lb. in.	110	2.74	25	1800	12	3/8, 1/2, 5/8, 3/4, 7/8, 1
Hollow Bore Configurations	MC6	1–68 lb. in.	150	4.28	25	1800	12	3/8, 1/2, 5/8, 3/4, 7/8, 1
Comgulations	MC6D	6–136 lb. in.	300	8.52	25	1800	24	1/2, 5/8, 3/4, 7/8, 1
	MC9	15–300 lb. in	. 345	65.74	50	1200	48 5/	8, 3/4, 7/8, 1, 1-1/8, 1-1/4
	MB1	0-1.1 oz. in.	3	0.001	1	3600	2.5 oz.	3/16
	MB1.5	1–13 oz. in.	10	0.02	5	3600	11 oz.	1/4
	MB2	.5-22 oz. in.	10	0.02	5	3600	11.5 oz.	1/4, 3/8
	MB2.5	.5–5.0 lb. in.	15	0.11	10	1800	2.5	3/8, 1/2
	MB3	0.5–6 lb. in.	18	0.14	10	1800	2	3/8
	MB4	0.7–10 lb. in	. 22	0.33	10	1800	3.5	1/2, 5/8
	MB5	1–30 lb. in.	72	1.76	25	1800	10	1
Solid Shaft Configurations	MB5.5	1–50 lb. in.	110	2.79	25	1800	12.5	1
e onngarationo	MB6	1–68 lb. in.	150	4.33	25	1800	12	1
	MB6D	6–136 lb. in.	300	8.68	25	1800	26	7/8
	MB9	15–300 lb. in	. 345	66.09	50	1200	48	1

Typical Mounting Arrangements

Brake:

Typical setup for tensioning wire, film and fibers.

Typical setup for material handling, soft starts and torque limiting.

Stub Shaft Adapter

Clutch Coupling:

Typical setup for torque limiting protection used for labeling, capping and printing applications.

M Series – Permanent Magnet

Specifications	Model Size	Torque	Heat Dissipation (watts)	Inertia (Ibs. sq. in.)	Bending Moment (Ib. in.)	Max RPM	Weight (lbs.)	Bore Range/Shaft Dia. (in.)
	MC1.5S	1–13 oz. in.	10	0.02	5	3600	10.5 oz.	1/4
Alter The second	MC2S	0.5–22 oz. in.	10	0.02	5	3600	11 oz.	1/4
	MC2.5S	0.5–5.5 lb. in.	15	0.11	10	1800	1.5	3/8, 1/2
	MC3S	0.5–6 lb. in.	18	0.14	10	1800	2.5	5/16, 3/8
	MC4S	0.7–10 lb. in.	22	0.32	10	1800	3.5	3/8, 1/2, 5/8
Hollow Bore	MC5S	1–30 lb. in.	72	1.72	25	1800	9.5	3/8, 1/2, 5/8, 3/4, 7/8, 1
Configurations	MC5.5S	1–50 lb. in.	110	2.74	25	1800	12	3/8, 1/2, 5/8, 3/4, 7/8, 1
	* Size 6D N	NS 9 are not cu	urrently availa	able as stainle	ess steel pr	oducts		
	MB1S	0-1.1 oz. in.	3	0.001	1	3600	2.5 oz.	3/16
100	MB1.5S	1–13 oz. in.	10	0.02	5	3600	11 oz.	1/4
South Street Links	MB2S	.5-22 oz. in.	10	0.02	5	3600	11.5 oz.	1/4, 3/8
	MB2.5S	.5–5.5 lb. in.	15	0.11	10	1800	2.5	3/8, 1/2
a total	MB3S	0.5–6 lb. in.	18	0.14	10	1800	2	3/8
	MB4S	0.7–10 lb. in.	22	0.33	10	1800	3.5	1/2, 5/8
	MB5S	1–30 lb. in.	72	1.76	25	1800	10	1
Solid Shaft	MB5.5S	1–50 lb. in.	110	2.79	25	1800	12.5	1
Configurations	MB6S	1–68 lb. in.	150	4.33	25	1800	12	1
	MC6S	1–68 lb. in.	150	4.28	25	1800	12	3/8, 1/2, 5/8, 3/4, 7/8, 1

Stainless steel clutches and brakes for harsh environments

Caustic washdown solutions can cause corrosion and eventual failure in food processing applications such as meat and poultry. That's why we have introduced a new line of all stainless steel clutches and brakes. These units, featuring 400 series stainless steel bearings, are robust enough to handle the most hostile washdown environments and tough enough to perform 24/7.

M Series – Permanent Magnet

Drawing A

*Set scre	w adjustment			*Spanner v	vrench adjustmen	t	
Model	Drawing	Α	В	С	D	E	F
MC1.5	А	1.85	1.62	1.38	0.375	0.24	-
MC2	А	1.85	1.62	1.35	0.375	0.27	-
MC2.5	А	2.31	2.52	2.23	0.79	0.29	-
MC3	А	2.74	2.22	1.98	0.590	0.24	-
MC4	А	3.23	2.27	2.01	0.98	0.26	-
MC5	А	4.65	3.18	2.64	1.372	0.45	-
MC5.5	А	5.29	3.21	2.64	1.372	0.57	-
MC6	В	6.05	3.18	2.02	1.372	0.76	0.18
MC6D	В	7.15	5.03	4.06	1.378	0.59	0.29
MC9	В	9.40	4.18	3.49	1.77	0.56	0.13

Bore & Keyseat Sizes

		Lockdown	G	н	I.	
Model	Keyseat	Method	(Bore)	(Pilot-Both Ends)	(Both Ends)	
MC1.5	None	3/32 Roll Pin	1/4	0.877–0.876 x 0.08 dp	3) 6-32 x 5/16 dp 1.25 B.C.	
MC2	None	3/32 Roll Pin	1/4	0.877–0.876 x 0.08 dp	3) 6-32 x 5/16 dp 1.25 B.C.	
MC2.5	None	2) Set Screws	3/8	1 655–1 653 x 0 10 dp	3) 10-32 x 7/16 dp 1 875 B C	
	1/8 Key	2) Set Screws	1/2			
MC3	None	2) Set Screws	5/16	1 383/1 381 x 120 dp	3) 10-32 x 7/16 dp 1 875 B C	
	None	2) Set Screws	3/8		c) to c2 x the cp there 21ct	
	None	2) Set Screws	3/8			
MC4	1/8 Key	2) Set Screws	1/2	1.854–1.852 x 0.08 dp	3) 10-32 x 7/16 dp 2.375 B.C.	
	3/16 Key	2) Set Screws	5/8			
	None	2) Set Screws	3/8			
	1/8 Key	2) Set Screws	1/2			
MC5	3/16 Key	2) Set Screws	5/8	$2 441/2 440 \times 10 dp$	3) 10-32 x 1/2 dp 3 00 B C	
1000	3/16 Key	2) Set Screws	3/4	2.441/2.440 X 110 up	0) 10 02 x 1/2 up 0.00 b.0.	
	3/16 Key	2) Set Screws	7/8			
	1/4 Shallow	2) Set Screws	1			
	None	2) Set Screws	3/8			
	1/8 Key 2)	2) Set Screws	1/2		2) 10, 22 × 1/2 dp 2,00 B C	
	3/16 Key	2) Set Screws	5/8	0.441/0.440	3) 10-32 X 1/2 up 3.00 B.C.	
10105.5	3/16 Key	2) Set Screws	3/4	2.441/2.440 x .26 dp		
	3/16 Kev	2) Set Screws	7/8		3) 5/16–18 X 0.62 dp 3.50 B.C.	
	1/4 Shallow	2) Set Screws	1			
	None	2) Set Screws	3/8			
	1/8 Key	2) Set Screws	1/2			
1400	3/16 Key	2) Set Screws	5/8	0 444 /0 440	0) 1/1 00	
MC6	3/16 Key	2) Set Screws	3/4	2.441/2.440	3) 1/4-20 x 5/16 dp 2.875 B.C.	
	3/16 Kev	2) Set Screws	7/8			
	1/4 Shallow	2) Set Screws	1			
	3/16 Key	2) Set Screws	5/8			
MOGD	3/16 Key	2) Set Screws	3/4	2 250/2 248	$2) E(16, 18 \times 1/2) dm (1.00) B C$	
IVICOD	3/16 Key	2) Set Screws	7/8	3.250/3.248	з) 5/16-18 х 1/2 ар 4.00 В.С.	
	1/4 Shallow	2) Set Screws	1			
	3/16 Key	2) Set Screws	5/8			
	3/16 Key	2) Set Screws	3/4		4) E/16, 18 x 0 E0 dp E 87E D 0	
MCQ	3/16 Key	2) Set Screws	7/8	3 250/3 248	4) 5/10-18 X U.50 ap 5.8/5 B.C.	
IVIC9	1/4 Key	2) Set Screws	1	0.200/0.240		
	1/4 Key	2) Set Screws	1-1/8		3) 5/ 10- 18 X 1/2 dp 4.25 B.C.	
	1/4 Key	2) Set Screws	1-1/4			
	,	,				

									*	B≯	→ G •		
Drawing C									Drawing D				
	*Thum	b scre	ew adji	ustme	nt				*Spanne	er wrench adjustment			
Model	Drawing	Α	В	С	D (Shaft)	Е	F	G	KEY SEAT	H (Pilot-Both Ends)	l (Both Ends)		
MB1	С	0.99	1.37	0.86	3/16	0.51	-	0.170 Flat	-	0.300/0.302 x 0.12 dp	3) 4-40 x 1/4 dp 0.610 B.C.		
MB1.5	С	1.85	2.36	1.38	1/4	.98	-	0.230 Flat	-	0.876/0.877 x 0.08 dp	3) 6-32 x 5/16 dp 1.250 B.C.		
MB2	C C	1.85 1.85	2.36 2.36	1.35 1.35	1/4 3/8	1.01 1.01	-	0.230 Flat 0.355 Flat	-	0.876/0.877 x 0.08 dp 0.876/0.877 x 0.08 dp	3) 6-32 x 5/16 dp 1.250 B.C. 3) 6-32 x 5/16 dp 1.250 B.C.		
MB2.5	C C	2.31 2.31	3.35 3.35	2.23 2.23	3/8 1/2	1.12 1.12	-	0.355 Flat 0.430/0.414	_ 0.125	1.653/1.655 x 0.10 dp 1.653/1.655 x 0.10 dp	3) 10-32 x 7/16 dp 1.875 B.C. 3) 10-32 x 7/16 dp 1.875 B.C.		
MB3	С	2.74	3.02	1.98	3/8	1.04	0.04	0.355 Flat	-	1.383/1.381 x 0.12 dp	3) 10-32 x 7/16 dp 1.875 B.C.		
MB4	C C	3.23 3.23	2.98 2.98	2.01 2.01	1/2 5/8	0.97 0.97	0.09 0.09	0.430/0.414 0.518/0.502	0.125 0.188	1.852/1.854 x 0.08dp 1.852/1.854 x 0.08dp	3) 10-32 x 7/16 dp 2.375 B.C. 3) 10-32 x 7/16 dp 2.375 B.C.		
MB5	С	4.65	4.48	2.64	1	1.75	0.12	0.860/0.844	0.250	2.441/2.440 x 0.100 dp	3) 10-32 x 1/2 dp 3.000 B.C.		
MB5.5	С	5.29	4.53	2.65	1	1.88	0.25	0.860/0.844	0.250	2.441/2.440 x 0.26 dp	3)10-32 x 1/2 dp 3.000 B.C. and 3) 5/16-18 x 0.62 dp 3.500 B.C.		
MB6	D	6.05	4.48	2.02	1	2.06	0.18	0.860/0.844	0.250	2.441/2.440	3) 1/4-20 x 5/16 dp 2.875 B.C.		
MB6D	D	6.95	6.23	4.06	7/8	1.81	0.24	0.771/0.755	0.188	3.250/3,248	3) 5/16-18 x 1/2 dp 4.000 B.C.		
MB9	D	9.40	5.39	3.49	1	1.77	0.13	0.860/0.844	0.250	3.250/3.248	4) 5/16-18 x 1/2 dp 5.875 B.C. and 3) 5/16-18 x 1/2 dp 4.250 B.C.		

Optional Mounting Bracket

Note: Mount bracket to fixed end cap - side opposite knurled adjustment ring.

Model	Fits Size	Α	В	C	D	E	F	G	H	l
MPB-2B	MB1.5, 2	0.270	1.750	1.155	0.390	0.280	2.500	0.755	1.500	3.000
(MPB-2BM)	MC1.5, 2	(6.9)	(44.5)	(29.3)	(9.9)	(7.1)	(63.5)	(19.2)	(38.1)	(76.2)
MPB-15B	MB2.5/MC2.5, 3, 4	0.270	2.500	1.155	0.390	0.280	3.500	1.130	2.000	4.000
(MPB-15BM)	MB4/MC4, 3, 4	(6.9)	(63.5)	(29.3)	(9.9)	(7.1)	(88.9)	(28.7)	(50.8)	(101.6)
MPB-70B	MB5/	0.270	4.875	1.155	0.390	0.280	6.000	1.630	3.500	6.000
(MPB-70BM)	MC5	(6.9)	(123.8)	(29.3)	(9.9)	(7.1)	(152.4)	(41.4)	(88.9)	(152.4)
MPB-120B	MB5.5	0.270	4.875	1.155	0.390	0.280	6.000	1.630	3.500	6.250
(MPB-120BM)) MC5.5	(6.9)	(123.8)	(29.3)	(9.9)	(7.1)	(152.4)	(41.4)	(88.9)	(158.8)
MPB-240B	MB6	0.270	4.875	1.155	0.390	0.280	6.500	2.445	4.000	7.500
(MPB-240BM)) MC6	(6.9)	(123.8)	(29.3)	(9.9)	(7.1)	(165.1)	(62.1)	(101.6)	(190.5)

All dimensions are nominal unless otherwise noted. () denotes (mm)

All Brackets are 12 gauge (.105") Steel

Ł

Heat Dissipation & Torque Setting Charts

- Utilized when "clutch coupling" configuration is desired.
- Comes complete with attachment hardware and drive key.
- Stub shaft adapters should be used in conjunction with a flexible coupling.
- Also available in Stainless Steel.

*If Solid Shaft Series is used with adapter, thumb screw must be removed and replaced with set screws.

Magnetic Particle Brakes and Clutches

Accurate torque control with instantaneous engagement!

Available in a wide range of models and sizes

Warner Electric's magnetic particle brakes and clutches are quiet and clean and provide outstanding performance in slipping and torque control applications. They are ideal for unwind, rewind, and intermittent (point to point) tension applications. They are also ideal for controlled starting or stopping, torque limiting and cycling applications.

These units use high quality materials and unique designs to provide precision performance, superior heat dissipation and extremely long life. The magnetic powder, made from alloy, provides extreme resistance to heat and wear, and, therefore, promotes long life and high thermal ratings. Also, one of the brake models, the PTB, incorporates a heat pipe that further extends its thermal capability. PTB units have thermal ratings three times higher than brakes with natural cooling and equivalent to water-cooled brakes.

Brakes

Six different brake models are available: four with male shafts and two

with hollow bores. The units with hollow bores can be shaft-mounted, if desired. Final selection is determined by torque and thermal requirements. The product selection section provides more specific information on these models.

Clutches

Three different clutch models, each with several sizes, are available to

handle a variety of applications. The face-mounted models can be used in parallel or inline applications. The shaftmounted units offer a second option for parallel shaft applications and are ideal for tension rewind applications. Please see the product selection section for more specific information.

Magnet Particle Brakes and Clutches

Features and Benefits

Precise Control

- Spherical particles provide smooth torque independent of speed. Low speed chatter is also eliminated.
- The magnetic circuit is designed to produce torque proportional to current.
- Unique design requires only one powder seal, thus reducing drag torque and allowing for a wider operating range.

Extremely Long Life

 Spherical particles made from alloy provide outstanding resistance to corrosion and mechanical breakdown.

High Heat Dissipation

- One of the models, the PTB, uses a heat pipe that provides heat dissipation levels equal to water-cooled units and several times greater than natural cooling.
- The shaft mounted clutches provide self-cooling through the use of an integral fan that rotates with the input.

Clean Operation

 All models are completely enclosed. Ideal for applications where clean operation is desired.

Easy to Mount

- Precision pilots are provided to position units for easy installation.
- Clutches and brakes with hollow bores are offered for applications where shaft mounting is desired.

Smooth Engagement

 Torque characteristics provide for smooth and controllable acceleration or deceleration of the load.

Fast Response

• Fine particles respond quickly to field for millisecond engagement, if required.

No Maintenance

Adjustment or lubrication is not required.

Quiet Operation

• Engagement is smooth and quiet.

Low Current Draw

• Efficient magnetic circuit design allows for minimal current draw.

Torque independent of slip speed

Torque is transmitted through magnetic particle chains that are formed by an electromagnetic field. The torque is independent of slip speed, depending only on circuit current, and is infinitely variable from 0 (disengaged) to rated torque.

No wearing parts

There are no friction surfaces to grab or wear, and the units are not affected by changes in atmospheric or other environmental conditions.

Efficient/Compact design

High torque to size ratio and low electric power consumption.

Versatile mounting

Convenient bolt circle for easy mounting. Mounting brackets available for all sizes. Brakes are available with solid shafts and through bores. Can only be mounted horizontally.

Distributor Item

Interchangeable with industry standard sizes.

Special Designs

Special Shaft Configurations

Customer specified shaft configurations for easy machine mounting and retrofitting.

Special Torque

Maximum torque configurations to meet customer specifications.

Special Mounting Configurations

Customer specified bolt patterns, special mounting brackets.

Metric units

Magnetic Particle Brakes and Clutches

Design and Operation

Warner Electric magnetic particle clutches and brakes are unique because of the wide operating torque range available. Torque to current is almost linear and can be controlled very accurately. The unique features of the magnetic particle clutches and brakes make them ideal for tension control, load simulation, cycling/ indexing, and soft starts and stops. Controls information starts on page 38.

Input shafts for inline or parallel shaft applications. Hollow bores also available.

Convenient pilot for mounting.

Magnet Particle Brakes and Clutches

POC Clutch

Principle of Operation

also available.

The magnetic particle unit consists of four main components: 1) housing; 2) shaft/disc; 3) coil and 4) magnetic powder. The coil is assembled inside the housing. The shaft/disc fits inside the housing/coil assembly with an air gap between the two; the air gap is filled with fine magnetic powder.

Engagement

When DC current is applied to the magnetic particle unit, a magnetic flux (chain) is formed, linking the shaft/disc to the housing. As the current is increased, the magnetic flux becomes stronger, increasing the torque. The magnetic flux creates extremely smooth torque and virtually no "stick-slip".

Disengagement

When DC current is removed, the magnetic powder is free to move within the cavity, allowing the input shaft to rotate freely.

Cycling

A cycling effect is achieved by turning the current to the coil on and off.

Magnetic Particle Brakes and Clutches

Selection

Unit torque ratings go from as low as 2.0 lb.in. to as high as 578 lb.ft. Also, many models are available to handle specific mounting requirements. The clutch family has three options. The MPC and POC have shaft inputs and outputs and is ideal for inline applications. The PHC models have a hollow bore and can be shaft-mounted for parallel shaft applications. The PMC clutch covers the lower end of the torque range and has a flanged input hub. Also, this unit is often mounted as a brake.

The brake family includes seven models. The MPB covers the low torque ranges and comes with shaft inputs or hollow bores. The POB is a shaft input brake that covers the medium and high torque extremes of the torque range. The PRB series covers the mid range. With four models that have different input and housing options. The PTB model uses a heat pipe cooling method that has a cooling capacity equivalent to watercooled units, but without the hassles of water cooling.

Selection Requirements

To properly size a magnetic particle brake or clutch, torque transmitted and heat generated must be considered. If you know these values, refer to the specifications and thermal curves to select a unit. For sizing and selection calculation see pages 16 through 28. To select a control for your application refer to the control section on page 38.

Magnet Particle Brakes and Clutches

Description	Cooling Method	Applications	Dimension Drawings (page no.)
Low and high torque units. Light duty thermal. All brakes have output shafts and pilots for mounting. Optional brackets available.	Natural	Tension unwind, light duty unwind	104
Low and high torque units are offered in this model. All units have male input shafts and pilots for mounting, except for the size 80, which is foot-mounted.	Natural	Tension unwind	106-107
This is the basic PRB model. It is offered with a hollow bore and a pilot for mounting.	Natural	Tension unwind	108
The PTB-BL $_3$ offers superior heat dissipation capability. Units are pilot-mounted and a male input shaft is provided for connecting to the load.	Heat Pipe with 115VAC blower	Tension unwind, load for testing. Ideal for applications requiring high heat dissipation	105
These units offer precise control in the small tension ranges. They have flanged input hubs and double-ended output shafts for maximum mounting flexibility. They can be easily mounted as clutches or brakes.	Natural	Tension unwind or rewind, soft start or stop, torque limiting	109-110
Low and medium torque units for light duty rewind applications. Shaft in-shaft out with pilots, allow for sample mounting. Optional brackets available.	Natural	Tension rewind, light duty rewind	111
This model has a hollow bore, making it ideal for applications where shaft mounting is preferred. It has a piloted input flange for pulley or sprocket attachment.	Self-cooling with integral fan	Tension rewind, soft start	112
This model is preferred in many applications. It is offered with male input and output shafts and all units are pilot mounted, except for the size 80. This largest unit, the size 80, is footmounted.	Natural	Tension rewind	113-114

Magnetic Particle Brakes and Clutches

Mechanical and Electrical Data (24 VDC)

		Torque	Drag Torque	Max.	Inertia	Resistance	_	Max. Heat	
Model	Size	lb.ft (lb,in.)	lb.ft. (lb.in)	Speed RPM	lb.ft. ² (lb.in ²)	Ohms 75°F	Amperes 75°F	Diss. Watts @ Max. RPM	Weight Ibs.
	2	(2)	(.40)	1800	(1.31 x 10 ⁻³)	303	0.079	10	1
	15	(15)	(.40)	1000	(1.39 x 10 ⁻²)	80	0.302	20	3
	25	(25)	(.40)	1000	(0.013)	45	0.533	20	2.5
МРВ	70	(70)	(1)	1000	(8.03 x 10 ⁻²)	35	0.677	100	7
	120	(120)	(2)	1000	(3.75 x 10⁻¹)	33	0.742	140	12
	240	(240)	(4)	1000	(1.35)	14	1.693	200	20
	0.3	2.1	.065	1800	.0128	35.6	.674	105	5.5
	0.6	4.3	.13	1800	.0173	21.1	1.14	80	7.9
	1.2	8.6	.26	1800	.0304	20.6	1.16	145	12
	2.5	18	.54	1800	.0973	15.8	1.52	195	22
DOD	5	36	1.1	1800	.249	8.8	2.74	290	38
PUB	10	72	2.2	1800	1.04	9.0	2.68	460	77
	20	144	4.3	1800	2.23	7.2	3.34	790	128
	40	289	8.7	1800	5.93	5.1	4.66	1990	220
	80	578	17	1800	23.5	4.3	5.57	3900	551
	1.2	8.6	.26	1800	.104	31.6	.760	95	11
	2.5	18	.54	1800	.161	25.6	.937	118	15
PRB-H	5	36	1.1	1800	.453	19.3	1.24	170	29
	10	72	2.2	1800	1.51	14.8	1.62	355	57
	20	144	4.3	1800	4.46	12.5	1.93	570	101
	2.5	18	.54	1800	.0973	15.8	1.52	880	24
РТВ	5	36	1.1	1800	.249	8.8	2.74	1850	38
	10	72	2.2	1800	1.04	9.0	2.68	3050	76
	20	144	4.3	1800	2.23	7.20	3.34	4400	114
	10	(8.6)	(.25)	1800	.239	35.1	.684	30	2
PMC-A ₃	20	(17)	(.51)	1800	.413	31.6	.760	40	2.9
	40	(34)	(1)	1800	1.14	26.3	.912	68	5.5
	2	(2)	(.40)	1800	(1.33 x 10⁻³)	303	0.079	10	1
MPC	15	(15)	(.40)	1000	(1.48 x 10 ⁻²)	80	0.302	20	6
	25	(25)	(.40)	1000	(0.013)	45	0.533	20	5.5
	70	(70)	(1)	1000	(8.89 x 10 ⁻²)	35	0.677	100	17
	120	(120)	(2)	1000	(3.62 X 10 ⁻¹)	33	0.742	140	22
	0.6	4.3	.13	1800	.0223	21.1	1.14	105	9.3
	1.2	8.6	.26	1800	.0392	20.6	1.16	200	13
PHC-R	2.5	18	.54	1800	.126	15.8	1.52	395	22
	5	36	1.1	1800	.323	8.8	2.74	620	38
	10	72	2.2	1500	1.42	9.0	2.68	940	95
	20	144	4.3	1500	3.01	7.20	3.34	1350	154
	0.3	2.1	.065	1800	.0128	35.6	.674	105	5.5
	0.6	4.3	.13	1800	.0173	21.1	1.14	80	7.9
	1.2	8.6	.26	1800	.0304	20.6	1.16	145	12
	2.5	18	.54	1800	.0973	15.8	1.52	195	22
POC	5	36	1.1	1800	.249	8.8	2.74	290	38
	10	72	2.2	1800	1.04	9.0	2.68	460	77
	20	144	4.3	1800	2.23	7.2	3.34	790	128
	40	289	8.7	1800	5.93	5.1	4.66	1990	220
	80	578	17	1800	23.5	4.3	5.57	3900	551

Magnet Particle Brakes and Clutches

Sizing

To properly size magnetic particle clutches or brakes the thermal energy (slip watts) and torque transmitted must be considered. If thermal energy and torque are known for the application select the unit from the charts to the right.

RPM

RPM must be known when calculating thermal energy (slip watts). For load simulation, torque limiting and similar applications, RPM is known. For web handling, the RPM is calculated as follows:

*In rewind applications the motor RPM should be higher (10%) than the fastest spool RPM. **In applications with the web running over a pulley or in a nip roll application use the pulley diameter

as the roll diameter.

Thermal Energy (slip watts)

Tension applications are considered continuous slip applications. When a brake or clutch is slipping, heat is generated. Heat is described in terms of "energy rate" and is a function of speed, inertia, and cycle rate. Heat generated is usually described in terms of thermal energy or slip watts. Starting and stopping applications generate heat when the unit slips during the stopping and starting of the load.

• For continuous slip applications, such as tension control in an unwind or rewind application slip watts are calculated using the following formula:

Slip Watts = .0118 x Torque (lb.in.) x Slip RPM

• For cycling applications heat is generated intermittently, and is calculated using the following formula:

Watts =
$$2.67 \times \text{Inertia (Ib.in.2)}$$

x $\left(\begin{array}{c} \text{RPM} \\ 10,000 \end{array} \right)^2 \times F \begin{array}{c} \text{cycle} \\ \text{min.} \end{array}$

Duty Cycle

The average heat input must be below the clutch or brake's heat dissipation rating. If the application generates intermittent heat dissipation, use the average speed for the thermal energy (slip watts) calculations.

Quick Selection Charts

MPB25/MPC25

MPB120/MPC120

Torque

Tension applications calculate torque as a function of roll radius and tension. Soft/controlled stopping applications calculate torque as a function of inertia, speed and desired time to stop the load. Torque limiting applications calculate torque as the allowable drive through torque. Calculate the torque requirement based on the formulas for the different applications:

• To calculate torque for a web handling application, determine the desired tension in the web then calculate the required torque as follows:

Torque (lb.in.) =

2 *Use full roll diameter. In applications with the web running over a pulley or in a nip roll applica-

MPB15/MPC15

MPB70/MPC70

MPB240

tion use the pulley diameter as the roll diameter.

• To calculate torque for soft/controlled stop or cycling applications first determine the inertia (WR²), and apply it to the formula below:

[(weight of body) x (radius of gyration*)]²

*to calculate for a cylinder about its axis: Solid cylinder = $R^2 = 1/2r^2$ Hollow cylinder = $R^2 = 1/2(r_1^2 + r_2^2)$

Heat Dissipation Curves

Operating Temperature

The surface temperature of the unit must be less than the temperature indicated in the following chart.

Maximum Surface Temperature

Model	Temp (°F)
PMC-A ₃	167
POC/PHC-R/POB	176
$PRB/PTB-BL_3$	194

PHC-R Clutches

POC/POB Clutches/Brakes

PMC-A₃ Clutches or Brakes

Heat Dissipation
Magnet Particle Brakes and Clutches

PTB-BL₃ Brakes

PRB-1.2H, 2.5H, 5H, 10H and 20H

MPB Series Brakes

Brakes

Dimensions

Model	Α	В	C	D	E	F	G	H	I (Shaft)	J (Bore)	K	L
MPB2-1	2.11	0.750/0.749	2.23	1.15	0.06	0.70	0.87	-	0.2498/0.2492	-	(3) #6-32 x 0.27 on 1.350 BC	1 Flat
MPB15-1	2.96	1.125/1.124	3.05	1.46	0.07	0.85	1.35	-	0.3748/0.3742	-	(3) #8-32 x 0.30 on 2.000 BC	2 Flats at 90°
MPB15-2	2.96	1.125/1.124	2.05	1.46	0.07	0.85	0.34	0.18	-	0.375/0.376	(3) #8-32 x 0.30 on 2.000 BC	0.125 Thru Hole
MPB15-3	2.96	1.125/1.124	2.70	1.46	0.07	0.85	0.99	-	0.4998/0.4992	_	(3) #8-32 x 0.30 on 2.000 BC	2 Flats at 90°
MPB25-1	2.96	1.125/1.124	2.05	1.46	0.07	0.85	1.35	-	0.3748/0.3742	-	(3) #8-32 x 0.30 on 2.000 BC	2 Flats at 90°
MPB25-2	2.96	1.125/1.124	2.05	1.46	0.07	0.85	0.34	0.18	_	0.375/0.376	(3) #8-32 x 0.30 on 2.000 BC	0.125 Thru Hole
MPB25-3	2.96	1.125/1.124	2.7	1.46	0.07	0.85	0.99	-	0.4998/0.4992	-	(3) #8-32 x 0.30 on 2.000 BC	2 Flats at 90°
MPB70-1	4.57	1.625/1.624	2.62	1.76	0.10	0.98	0.50	0.18	-	0.500/0.501	(4) #10-32 x 0.50 on 4.228 BC	0.125 Thru Hole
MPB70-2	4.57	1.625/1.624	3.37	1.76	0.10	0.98	1.25	-	0.7497/0.7492	-	(4) #10-32 x 0.50 on 4.228 BC	0.188 Keyway
MPB120-1	5.25	1.625/1.624	4.02	2.17	0.10	1.18	1.50	0.50	_	0.500/0.501	(4) #1/4-20 x 0.75 on 4.812 BC	0.156 Thru Hole
MPB120-2	5.25	1.625/1.624	4.02	2.17	0.10	1.18	1.50	-	0.7497/0.7492	-	(4) #1/4-20 x 0.75 on 4.812 BC	0.188 Keyway
MPB240-1	6.23	2.442/2.440	4.66	2.65	0.10	1.46	1.65	-	0.7497/0.7492	-	(4) #1/4-20 x 0.65 on 5.875 BC	0.188 Keyway
MPB240-2	6.23	2.442/2.440	3.51	2.65	0.10	1.46	0.50	_	_	0.875/0.876	(4) #1/4-20 x 0.65 on 5.875 BC	0.188 Keyway
MPB240-3	6.23	2.442/2.440	3.51	2.65	0.10	1.46	0.50	-	_	1.000/1.001	(4) #1/4-20 x 0.65 on 5.875 BC	0.250 Shallow Keyway

Specifications

Model Number	Max. Drag Torque O Excit. (Ib.in.)	Rated Torque (Ib.in.)	Rated Voltage	Resistance (Ohms)	Rated Current (Amps)	Response Zero Force (Millisec)	Response With Force (Millisecs)	Inertia of Output Shaft (Ib.in.2)	Max. Heat Dissipation (watts)	Max. Speed Recom. (RPM)	Weight
MPB2	0.40	2	24	92	0.261	8	4	0.001	10	1,800	1
	0.40	2	90	1552	0.058	8	4	0.001	10	1,800	1
MPB15	0.40	15	24	80	0.302	25	9	0.013	20	1,000	2.5
	0.40	15	90	1501	0.060	25	9	0.013	20	1,000	2.5
MPB25	0.40	25	24	45	0.533	25	9	0.013	20	1,000	2.5
MPB70	1.00	70	24	35	0.677	70	17	0.073	100	1,000	8
	1.00	70	90	613	0.147	70	17	0.073	100	1,000	8
MPB120	2.00	120	24	33	0.742	90	25	0.370	140	1,000	12.5
	2.00	120	90	475	0.190	90	25	0.370	140	1,000	12.5
MPB240	4.00	240	24	19	1.286	150	45	1.311	200	1,000	20.5
	4.00	240	90	246	0.366	150	45	1.311	200	1,000	20.5

Dimensions

Shaft Dimensions												
Size	J	K	L	М								
2.5	0.7874/0.7866	0.1978/0.1973	0.20	0.12								
	(20.000/19.979)	(5.024/5.012)	(5)	(3)								
5	0.9843/0.9834	0.2768/0.2762	0.28	0.16								
	(25.000/24.979)	(7.030/7.015)	(7)	(4)								
10	1.1811/1.1803	0.2768/0.2762	0.28	0.16								
	(30.000/29.979)	(7.030/7.015)	(7)	(4)								
20	1.3780/1.3770	0.3949/0.3943	0.31	0.18								
	(35.000/34.975)	(10.030/10.015)	(8)	(4.5)								

Specifications

Model	Nominal Part Number	Torque (lb. ft.)	E-Stop Torque (lb. ft.)	Nominal Drag Torque (lb. ft.)	Maximum Speed (rpm)	Inertia Input (Ib. ft.²)	Max. Heat Diss. Watts @ Max. RPM	Weight (Ibs.)
2.5	5401-169-141	18	23	.54	1,800	.0973	880	24
5	5401-169-151	36	47	1.1	1,800	.249	1,850	38
10	5401-169-161	72	88	2.2	1,800	1.04	3,050	76
20	5401-169-171	144	180	4.3	1,800	2.23	4,400	114

inches (mm)

										N			
Size	A	В	C	D	E	F	G	H*	I	Thread Size	Depth	Num. of Holes	Bolt Circle
2.5	7.17 (182)	8.72 (221.5)	6.67 (169.5)	1.69 (43)	0.59 (15)	1.69 (43)	1.50 (38)	□ 4.72 □ (120)	2.1654/2.1642 (55.000/54.970)	M6	0.51 (13)	6	3.071 (78)
5	8.62 (219)	10.81 (274.5)	8.19 (208)	2.42 (61.5)	0.91 (23)	2.24 (57)	1.85 (47)	○ 5.91 ○ (150)	2.9134/2.9122 (74.000/73.970)	M6	0.51 (13)	6	3.937 (100)
10	11.42 (290)	13.19 (335)	10.12 (257)	2.42 (61.5)	0.98 (25)	2.64 (67)	2.20 (56)	○ 5.91 ○ (150)	3.9370/3.9356 (100.000/99.965)	M10	0.71 (18)	6	5.512 (140)
20	13.19 (335)	13.88 (352.5)	10.61 (269.5)	2.42 (61.5)	0.98 (25)	2.80 (71)	2.36 (60)	○ 5.91 ○ (150)	4.3307/4.3293 (110.000/109.965)	M10	0.71 (18)	6	5.906 (150)

*Adjacent symbol denotes shape of blower.

POB Series Brakes

Dimensions Sizes 0.3 through 40

End View (POB-0.6, 1.2, 2.5, 5.0, 10 and 20) inches (mm)

						Shaft Dimensions							I	_	
Model	A	В	C	D	E	F	G	н	I	J	К	Thread Size	Depth	No. of Holes	Bolt Circle
	4.72	4.13	0.91	2.95	0.43	2.52	1.6535/1.6526	0.3937/0.3931	0.1584/0.1580	0.16	0.10	M5	0.39	6	2.520
F0D-0.3	(120)	(105)	(23)	(75)	(11)	(64)	(42.000/41.975)	(10.000/9.985)	(4.024/4.012)	(4)	(2.5)		(10)		(64)
	5.28	4.29	1.02	3.01	0.39	2.62	1.6535/1.6526	0.4724/0.4717	0.1584/0.1580	0.16	0.10	M5	0.43	6	2.520
FUD-0.0	(134)	(109)	(26)	(76.5)	(10)	(66.5)	(42.000/41.975)	(12.000/11.982)	(4.024/4.012)	(4)	(2.5)		(11)		(64)
DOD 1 2	5.98	5.14	1.36	3.52	0.51	3.01	1.6535/1.6526	0.5906/0.5898	0.1978/0.1973	0.20	0.12	M6	0.51	6	2.520
FUD 1.2	(152)	(130.5)	(34.5)	(89.5)	(13)	(76.5)	(42.000/41.975)	(15.000/14.982)	(5.024/5.012)	(5)	(3.0)		(13)		(64)
	7.17	6.10	1.69	4.06	0.59	3.46	2.1654/2.1642	0.7874/0.7866	0.1978/0.1973	0.20	0.12	M6	0.51	6	3.071
PUB 2.3	(182)	(155)	(43)	(103)	(15)	(88)	(55.000/54.970)	(20.000/19.979)	(5.024/5.012)	(5)	(3.0)		(13)		(78)
	8.62	7.44	2.24	4.82	0.91	3.92	2.9134/2.9122	0.9843/0.9834	0.2768/0.2762	0.28	0.16	M6	0.51	6	3.937
PUB 0.0	(219)	(189)	(57)	(122.5)	(23)	(99.5)	(74.000/73.970)	(25.000/24.979)	(7.030/7.015)	(7)	(4.0)		(13)		(100)
DOD 10	11.42	9.19	2.64	6.12	0.98	5.14	3.9370/3.9356	1.1811/1.1803	0.2768/0.2762	0.28	0.16	M10	0.71	6	5.512
PUB IU	(290)	(233.5)	(67)	(155.5)	(25)	(130.5)	(100.000/99.965)	(30.000/29.979)	(7.030/7.015)	(7)	(4.0)		(18)		(140)
	13.19	10.37	2.80	7.11	0.98	6.12	4.3307/4.3293	1.3780/1.3770	0.3949/0.3943	0.31	0.18	M10	0.71	6	5.906
PUB 20	(335)	(263.5)	(71)	(180.5)	(25)	(155.5)	(110.000/109.965)	(35.000/34.975)	(10.030/10.015)	(8)	(4.5)		(18)		(150)
	15.55	12.99	3.62	8.82	1.30	7.52	5.1181/5.1165	1.7717/1.7707	0.4739/0.4731	0.31	0.18	M12	0.79	8	7.870
FUB-40	(395)	(330)	(92)	(224)	(33)	(191)	(130.000/129.960)	(45.000/44.975)	(12.036/12.018)	(8)	(4.5)		(20)		(200)

K

POB Series Brakes

Size 80

Specifications

Size	Part Number	Rated Torque (lb. ft.)	E-Stop Torque (lb. ft.)	Drag Torque (Ib. ft.)	Maximum Speed (rpm)	Inertia Input (Ib. ft.²)	Max. Heat Diss. Watts @ Max. RPM	Weight (Ibs.)
0.3	5401-169-211	2.1	3.0	.065	1,800	.0128	105	5.3
0.6	5401-169-221	4.3	5.9	.13	1,800	.0173	80	7.5
1.2	5401-169-231	8.6	12.0	.26	1,800	.0304	145	11.5
2.5	5401-169-241	18	23.0	.54	1,800	.0973	195	24.3
5.0	5401-169-251	36	43.0	1.1	1,800	.0249	290	35.3
10	5401-169-261	72	101.0	2.2	1,800	1.04	460	72.8
20	5401-169-271	144	180.0	4.3	1,800	2.23	790	106
40	5401-169-281	289	361	8.7	1,800	5.93	1,990	176
80	5401-169-291	578	723	17	1,500	23.5	3,900	573

PRB-H Series Brakes

Dimensions

inches (mm)

Specifications

Size	Part Number	Torque (lb. ft.)	E-Stop Torque (Ib. ft.)	Drag Torque (lb. ft.)	Maximum Speed (rpm)	Inertia Input (Ib. ft.2)	Max. Heat Diss. Watts @ Max. RPM	Weight (Ibs.)
1.2	5401-169-331	8.6	12	.26	1,800	.104	95	11
2.5	5401-169-341	18	23	.54	1,800	.161	118	15
5	5401-169-351	36	43	1.1	1,800	.453	170	29
10	5401-169-361	72	101	2.2	1,800	1.51	355	57
20	5401-169-371	144	180	4.3	1,800	4.46	570	101

Bore Sizes												
Size	I	J	К									
1.2	0.5913/0.5906	0.1980/0.1972	0.6791/0.6693									
	(15.018/15.000*)	(5.028/5.010)	(17.250/17.000)									
2.5	0.7882/0.7874	0.1980/0.1972	0.8760/0.8661									
	(20.021/20.000*)	(5.028/5.010)	(22.250/22.000)									
5	1.1819/1.1811	0.2770/0.2761	1.3091/1.2992									
	(30.021/30.000*)	(7.035/7.013)	(33.250/33.000)									
10	1.1819/1.1811	0.2770/0.2761	1.3091/1.2992									
	(30.021/30.000)	(7.035/7.013)	(33.250/33.000)									
20	1.5758/1.5748	0.3951/0.3942	1.7224/1.7126									
	(40.025/40.000)	(10.035/10.013)	(43.750/43.500)									

* For availability of inch series bores, contact your Warner Electric representative.

inches (mm)

									L	-		
Size	Α	В	C	D	E	F	G	Н	Thread Size	No. of Depth	Bolt Holes	Circle
1.0	5.35	2.48	1.65	0.28	0.22	2.09	4.29	5.3543/5.3528	ME	0.39	6	4.92
1.2	(136)	(63)	(42)	(7)	(5.5)	(53)	(109)	(136.000/135.960)	CIVI	(10)	0	(125)
25	6.30	2.87	1.85	0.30	0.26	2.36	4.88	6.2992/6.2976	M5	0.39	6	5.83
2.5	(160)	(73)	(47)	(6.5)	(6.5)	(60)	(124)	(160.000/159.960)	IVIJ	(10)	0	(148)
5	7.68	3.33	2.24	0.31	0.20	2.64	5.87	7.6772/7.6754	MG	0.47	6	7.13
J	(195)	(84.5)	(57)	(8)	(5)	(67)	(149)	(195.000/194.954)	IVIO	(12)	0	(181)
10	9.84	4.09	2.68	0.33	0.20	3.07	7.40	9.8425/9.8407	MG	0.47	o	9.17
10	(250)	(104)	(68)	(8.5)	(5)	(78)	(188)	(250.000/249.954)	IVIO	(12)	0	(233)
20	12.01	5.06	3.15	0.47	0.30	3.74	9.21	12.0079/12.0058	MO	0.47	o	11.10
20	(305)	(128.5)	(80)	(12)	(7.5)	(95)	(234)	(305.000/304.948)	IVIÖ	(12)	0	(282)

These units offer precise control in the small tension ranges. They have flanged input hubs and double-ended output shafts for maximum mounting flexability. They can be easily mounted as clutches or brakes.

PMC Series Clutches/Brakes

Specifications

Size	Part Number	Torque (lb. in.)	E-Stop Torque (lb. in.)	Drag Torque (lb. in.)	Maximum Speed (rpm)	Inertia Input (Ib. in.²)	Output (lb. in.²)	Max. Heat Diss. Watts @ Max. RPM	Weight (lbs.)
10	5401-270-111	8.6	11.5	.25	1,800	.239	.0291	30	2.0
20	5401-270-121	17	20.4	.51	1,800	.413	.0752	40	2.9

inches (mm)

Size	Α	В	C	D	E	F	G	H	Ι	J	K	L	М	N
10	2.28	3.35	0.59	0.16	0.59	0.47	0.47	0.31	0.24	0.39	0.39	2.01	2.99	1.18
	(58)	(85)	(15)	(4)	(15)	(12)	(12)	(8)	(6)	(10)	(10)	(51)	(76)	(30)
20	2.72	4.57	1.30	0.16	0.87	0.98	0.94	0.59	0.24	0.79	0.79	2.01	3.62	1.38
	(69)	(116)	(33)	(4)	(22)	(25)	(24)	(15)	(6)	(20)	(20)	(51)	(92)	(35)

			Sh	aft Dimens	sions		U		V		
Size	Р	Q	R	S	т	Thread Size	Depth	Bolt Circle	Hole Size	Bolt Circle	
10	2.1260/2.1248 (54.000/53.970)	2.2835/2.2823 (58.000/57.970)	0.2756/0.2750 (7.000/6.985)	0.24 (6)	_	M4	0.24 (6)	1.81 (46)	0.18 (4.5)	2.68 (68)	
20	2.1260/2.1248 (54.000/53.970)	2.7165/2.7154 (69.000/68.970)	0.4724/0.4720 (12.000/11.988)	0.45 (11.5)	0.45 (11.5)	M4	0.24 (6)	1.81 (46)	0.18 (4.5)	3.23 (82)	

PMC Series Clutches/Brakes

Dimensions

Specifications

Size	Part Number	Torque (lb. in.)	E-Stop Torque (lb. in.)	Drag Torque (lb. in.)	Maximum Speed (rpm)	Inertia Input (Ib. in.²)	Output (Ib. in.²)	Max. Heat Diss. Watts @ Max. RPM	Weight (lbs.)
40	5401-270-131	34	42.5	1.0	1,800	1.14	.372	68	5.5

inches (mm)

Size	Α	В	C	D	Е	F	G	H	I	J	K	L	М	N	0
40	3.39	3.82	0.83	0.16	0.87	0.39	0.34	0.59	0.24	0.16	0.16	2.32	4.41	1.97	0.79
	(86)	(97)	(21)	(4)	(22)	(10)	(8.7)	(15)	(6)	(4)	(4)	(59)	(112)	(50)	(20)

			Bore		U		V	
Size	Р	Q	R	Thread Size	Depth	Bolt Circle	Hole Size	Bolt Circle
40	2.7559/2.7547 (70.000/69.970)	3.3858/3.3844 (86.000/85.965)	0.4731/0.4724 (12.018/12.000)	M4	0.24 (6)	2.36 (60)	0.18 (4.5)	3.94 (100)

MPC Series Clutches

Dimensions

Model	Α	В	C	D	E	F	G (Output)	H (Input)	I	J	K5
MPC2-1	2.11	0.750/0.749	3.73	1.85	0.06	1.16	0.88	0.88	0.2498/0.2492	(3) #6-32 x 0.50 on 1.350 BC	Flat
MPC15-1	2.96	1.125/1.124	4.93	2.80	0.07	1.69	1.00	1.00	0.4998/0.4992	(3) #8-32 x 0.50 on 2.000 BC	2 Flats at 90°
MPC15-2	2.96	1.125/1.124	5.08	2.80	0.07	1.69	1.22	0.92	0.3748/0.3742	(3) #8-32 x 0.50 on 2.000 BC	2 Flats at 90°
MPC25-1	2.96	1.125/1.124	4.93	2.80	0.07	1.69	0.995	1.00	0.4998/0.4992	(3) #8-32 x 0.50 on 2.000 BC	2 Flats at 90°
MPC25-2	2.96	1.125/1.124	5.08	2.80	0.07	1.69	1.22	0.92	0.3748/0.3742	(3) #8-32 x 0.50 on 2.000 BC	2 Flats at 90°
MPC70	4.58	1.625/1.624	6.55	3.67	0.10	2.08	1.35	1.35	0.7497/0.7492	(4) #10-32 x 0.63 on 4.228 BC	0.188 Keyway
MPC120	5.25	1.625/1.624	7.02	4.00	0.10	2.40	1.50	1.35	0.7497/0.7492	(4) #1/4-20 x 0.75 on 4.812 BC	0.188 Keyway
MPC240	6.23	2.4415/2.4405	8.35	4.83	.10	2.62	1.66	1.66	.7495/.7485	(4) #1/4-20 X 0.65 on 5.875 BC	0.188 Keyway

Specifications

Model Number	Max. Drag Torque O Excit. (lb.in.)	Rated Torque (lb.in.)	Rated Voltage	Resistance (Ohms)	Rated Current (Amps)	Response Zero Force (Millisec)	Response With Force (Millisec)	Inertia of Output Shaft (Ib.in.2)	Max. Heat Dissipation (watts)	Max. Speed Recom. (RPM)	Weight
MDC2	0.40	2	24	92	0.261	8	4	0.001	10	1,800	2
IVIF 02	0.40	2	90	1552	0.058	8	4	0.001	10	1,800	2
MPC15	0.40	15	24	80	0.302	25	9	0.013	20	1,000	5.5
WIFUIJ	0.40	15	90	1501	0.060	25	9	0.013	20	1,000	5.5
MDCOF	0.40	25	24	45	0.533	25	9	0.013	20	1,000	5.5
IVIF 623	0.40	25	90	430	0.533	25	9	0.013	20	1000	5.5
MDC70	1.00	70	24	35	0.677	70	17	0.073	100	1,000	16
IVIF 670	1.00	70	90	613	0.147	70	17	0.073	100	1,000	16
MDC120	2.00	120	24	33	0.742	90	25	0.370	140	1,000	22
IVIF G120	2.00	120	90	475	0.190	90	25	0.370	140	1,000	22
MDC240	2.00	240	24	19.5	1.20	150	45	1.33	200	1000	37
IVIF 6240	2.00	240	90	225.5	0.400	150	45	1.33	200	1000	37

Optional Mounting Bracket (for mounting MPB Brakes and MPC Clutches)

Model	Fits Size	Α	В	C	D	E	F	G	H	I
MPB-2B	2	0.270 (6.9)	1.750 (44.5)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	2.500 (63.5)	0.755 (19.2)	1.500 (38.1)	3.000 (76.2)
MPB-15B	15, 25	0.270 (6.9)	2.500 (63.5)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	3.500 (88.9)	1.13 (28.7)	2.000 (50.8)	4.000 (101.6)
MPB-70B	70	0.270 (6.9)	4.875 (123.8)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	6.000 (152.4)	1.63 (41.4)	3.500 (88.9)	6.000 (152.4)
MPB-120B	120	0.270 (6.9)	4.875 (123.8)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	6.000 (152.4)	1.63 (41.4)	3.500 (88.9)	6.250 (158.8)
MPB-240B	240	0.270 (6.9)	4.875 (123.8)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	6.500 (165.1)	2.245 (62.1)	4.000 (101.6)	7.500 (190.5)

All dimensions are nominal unless otherwise noted. () denotes (mm)

PHC-R Series Clutches

Dimensions

inches (mm)

Н

0.4731/0.4724

(12.018/12.000)

0.5913/0.5906

(15.018/15.000)

0.9851/0.9843

(25.021/25.000)

1.3789/1.3780

(35.025/35.000)

1.7726/1.7717

(45.025/45.000)

2.1665/2.1654

(55.030/55.000)

Size

0.6

1.2

2.5

5

10

20

Bore Dimensions

L

0.1586/0.1579

(4.028/4.010)

0.1980/0.1972

(5.028/5.010)

0.2770/0.2761

(7.035/7.013)

0.3951/0.3942

(10.035/10.013)

0.4741/0.4731

(12.043/12.016)

0.5922/0.5912

(15.043/15.016)

J 0.5413/0.5315

(13.75/13.50)

0.6791/0.6693

(17.25/17.00)

1.1122/1.1024

(28.25/28.00)

1.5256/1.5157

(38.75/38.50)

1.9193/1.9094

(48.75/48.50)

2.3720/2.3622

(60.25/60.00)

Specifications

Size	Part Number	Nominal Torque (lb. ft.)	Nominal Drag Torque (lb. ft.)	Maximum Speed (rpm)	Inertia Input (Ib. ft. ²)	Output (Ib. ft.²)	Max. Heat Diss. Watts @ Max. RPM	Weight (lbs.)
0.6	5401-270-321	4.3	.13	1,800	.0223	.00712	105	9.3
1.2	5401-270-331	8.6	.26	1,800	.0392	.0171	200	13
2.5	5401-270-341	1 18	.54	1,800	.126	.0494	395	22
5	5401-270-351	1 36	1.1	1,800	.323	.138	620	38
10	5401-270-361	1 72	2.2	1,500	1.42	.617	940	95
20	5401-270-371	1 144	4.3	1,500	3.01	1.30	1,350	154

inches (mm)

										K				L	
Size	A	В	C	D	E	F	G	Thread Size	Depth	Num.of Holes	Bolt Circle	Thread Size	Depth	Num. of Holes	Bolt Circle
0.6	5.28 (134)	3.62 (92)	0.16 (4)	1.00 (25.5)	3.50 (89)	1.9685/1.9675 (50.000/49.975)	1.9685/1.9675 (50.000/49.975)	M4	0.24 (6)	6	2.362 (60)	M4	0.24 (6)	6	2.362 (60)
1.2	5.98 (152)	3.78 (96)	0.16 (4)	0.98 (25)	3.50 (89)	1.7717/1.7707 (45.000/44.975)	2.7559/2.7547 (70.000/69.970)	M5	0.24 (6)	6	2.165 (55)	M4	0.31 (8)	6	3.150 (80)
2.5	7.17 (182)	5.20 (132)	0.20 (5)	1.77 (45)	5.51 (140)	2.7559/2.7547 (70.000/69.970)	2.7559/2.7429 (70.000/69.670)	M6	0.39 (10)	6	3.150 (80)	M6	0.35 (9)	6	3.150 (80)
5	8.62 (219)	5.83 (148)	0.16 (4)	1.57 (40)	6.50 (165)	3.4252/3.4238 (87.000/86.965)	3.4252/3.4238 (87.000/86.965)	M8	0.39 (10)	6	4.016 (102)	M8	0.39 (10)	6	4.016 (102)
10	11.42 (290)	7.22 (183.5)	0.24 (6)	2.36 (60)	7.48 (190)	4.1339/4.1325 (105.000/104.965)	4.3307/4.3293 (110.000/109.965)	M10	0.51 (13)	6	4.724 (120)	M8	0.39 (10)	6	4.724 (120)
20	13.19 (335)	8.74 (222)	0.35 (9)	2.95 (75)	8.66 (220)	5.1181/5.1165 (130.000/129.960)	5.1181/5.1165 (130.000/129.960)	M10	0.59 (15)	6	5.906 (150)	M10	0.53 (13.5)	6	5.906 (150)

Note: This is a stationary field clutch. The tapped holes "L" in the field are for securing the housing to prevent it from rotating. This can be done with capscrews or with a restraining strap. Do not block ventilation openings when mounting.

This model is preferred in many applications. It is offered with male input and output shafts and all units are pilot mounted, except for the size 80. This largest unit, the size 80, is foot mounted.

POC Series Clutches

Dimensions Sizes 0.3 through 40

unless otherwise noted.

inches (mm)

								Shaft Dime	ensions					L	
Model	Α	В	C	D	Е	F	G	н	I	J	K	Thread Size	Depth	No. of Holes	Bolt Circle
P0C-0.3	4.72 (120)	5.79 (147)	0.91 (23)	3.43 (87)	0.43 (11)	2.56 (65)	1.6535/1.6526 (42.000/41.975)	0.3937/0.3931 (10.000/9.985)	0.1584/0.1580 (4.024/4.012)	0.16 (4)	0.10 (2.5)	M5	0.39 (10)	6 x 2	2.520 (64)
P0C-0.6	5.28 (134)	6.10 (155)	1.02 (26)	3.54 (90)	0.39 (10)	2.76 (70)	1.6535/1.6526 (42.000/41.975)	0.4724/.4717 (12.000/11.9820)	0.1584/0.1580 (4.024/4.012)	0.16 (4)	0.10 (2.5)	M5	0.43 (11)	6 x 2	2.520 (64)
P0C-1.2	5.98 (152)	7.40 (188)	1.36 (34.5)	4.17 (106)	0.51 (13)	3.15 (80)	1.6535/1.6526 (42.000/41.975)	0.5906/0.5898 (15.000/14.982)	0.1978/0.1973 (5.024/5.012)	0.20 (5)	0.12 (3)	M6	0.51 (13)	6 x 2	2.520 (64)
P0C-2.5	7.17 (182)	8.96 (227.5)	1.69 (43)	4.86 (123.5)	0.59 (15)	3.68 (93.5)	2.1654/2.1642 (55.000/54.970)	0.7874/0.7866 (20.000/19.979)	0.1978/0.1973 (5.024/5.012)	0.20 (5)	0.12 (3)	M6	0.51 (13)	6 x 2	3.071 (78)
POC-5	8.62 (219)	11.18 (284)	2.24 (57)	5.94 (151)	0.91 (23)	4.13 (105)	2.9134/2.9122 (74.000/73.970)	0.9843/0.9834 (25.000/24.979)	0.2768/0.2762 (7.030/7.015)	0.28 (7)	0.16 (4)	M6	0.51 (13)	6 x 2	3.937 (100)
P0C-10	11.42 (290)	13.70 (348)	2.64 (67)	7.56 (192)	0.98 (25)	5.59 (142)	3.9370/3.9356 (100.000/99.965)	1.1811/1.1803 (30.000/29.979)	0.2768/0.2762 (7.030/7.015)	0.28 (7)	0.16 (4)	M10	0.71 (18)	6 x 2	5.512 (140)
P0C-20	13.19 (335)	15.04 (382)	2.80 (71)	8.50 (216)	0.98 (25)	6.54 (166)	4.3307/4.3293 (110.000/109.965)	1.3780/1.3770 (35.000/34.975)	0.3949/0.3943 (10.030/10.015)	0.31 (8)	0.18 (4.5)	M10	0.71 (18)	6 x 2	5.906 (150)
POC-40	15.55 (395)	19.29 (490)	3.62 (92)	10.94 (278)	1.30 (33)	8.35 (212)	5.1181/5.1165 (130.000/129.960)	1.7717/1.7707 (45.000/44.975)	0.4739/0.4731 (12.036/12.018)	0.31 (8)	0.18 (4.5)	M12	0.79 (20)	8 x 2	7.874 (200)

G

Н

Air inlet for optional forced air cooling. Consult factory.

End View (Size 20 and smaller)

POC Series Clutches

Dimensions Size 80

Specifications

Size	Part Number	Torque (lb. ft.)	Drag Torque (Ib. ft.)	Maximum Speed (rpm)	Inertia Input (Ib. ft.²)	Output (Ib. ft.²)	Max. Heat Diss. Watts @ Max. RPM	Weight (Ibs.)
0.3	5401-270-211	2.1	.065	1,800	.0128	.00477	105	5.5
0.6	5401-270-221	4.3	.13	1,800	.0173	.00570	80	7.9
1.2	5401-270-231	8.6	.26	1,800	.0304	.0104	145	12
2.5	5401-270-241	18	.54	1,800	.0973	.0387	195	22
5	5401-270-251	36	1.1	1,800	.249	.114	290	38
10	5401-270-261	72	2.2	1,800	1.04	.437	460	77
20	5401-270-271	144	4.3	1,800	2.23	1.19	790	128
40	5401-270-281	289	8.7	1,800	5.93	3.08	1,990	220
80	5401-270-291	578	17	1,500	23.5	15.2	3,900	551

.47 ¥ (12) ¥

Optional Mounting Bracket (for mounting MPB Brakes and MPC Clutches)

inches (mm)									
Model	Fits Size (See Note)	A	В	C	D	E	F	G	H	I
MPB-2B	MB2/MC2	0.270 (6.9)	1.750 (44.5)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	2.500 (63.5)	0.750 (19.1)	1.500 (38.1)	3.000 (76.2)
MPB-15B	MB3/MC3, MB4/MC4	0.270 (6.9)	2.500 (63.5)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	3.500 (88.9)	1.125 (28.6)	2.000 (50.8)	4.000 (101.6)
MPB-70B	MB5/MC5	0.270 (6.9)	4.875 (123.8)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	6.000 (152.4)	1.625 (41.3)	3.500 (88.9)	6.000 (152.4)
MPB-120B	MB5.5/MC5.5	0.270 (6.9)	4.875 (123.8)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	6.000 (152.4)	1.625 (41.3)	3.500 (88.9)	6.250 (158.8)
MPB-240B	MB6/MC6	0.270 (6.9)	4.875 (123.8)	1.155 (29.3)	0.390 (9.9)	0.280 (7.1)	6.500 (165.1)	2.441 (62.0)	4.000 (101.6)	7.500 (190.5)

 $\label{eq:Note: All dimensions are nominal unless otherwise noted.$

All MPC Series clutches require 2 mounting brackets. MPB Series brakes require 1 mounting bracket.

Optional Torque Arm (for shaft mounting PRB-H and PRB-HF Brakes)

inches (mm)				
Model	Part Number	A inches (mm)	B inches (mm)	C inches (mm)
PRB-1.2H	5401-101-001	9.03 (229.4)	1.50 (38.1)	0.31 (7.9)
PRB-2.5H	5401-101-001	9.03 (229.4)	1.50 (38.1)	0.31 (7.9)
PRB-5H	5401-101-002	11.19 (284.2)	1.50 (38.1)	0.38 (9.5)
PRB-10H	5401-101-002	11.19 (284.2)	1.50 (38.1)	0.38 (9.5)
PRB-20H	5401-101-003	19.31 (490.5)	2.38 (60.3)	0.38 (9.5)

Magnetic Particle Brakes and Clutches

Overhung Load

When an overhung load (side load) is applied to the shaft, verify that this load does not exceed the maximum allowable. Operating speed and where the load is applied to the shaft (see Dimension A, below) must be known. For speed, determine the speed coefficient from the coefficient table. Also, determine the allowable overhung load from the chart based on Dimension A. Multiply the load from the chart times the speed coefficient to determine the allowable load for the application.

Overhung Load

Note: Shaft extensions are not recommended.

Pulley or Sprocket Load

For most applications, the overhung load is caused by pulleys or sprockets. The smaller the pitch diameter (PD) of the pulley or sprocket, the higher the belt or chain tension, and, therefore, the greater the overhung load. To determine the minimum pulley diameter for the application, use the following equation:

Minimum PD (in.) = $\frac{24 \text{ TK}}{\text{CR}}$

- T = Torque (lb.ft.) This is the torque actually being transmitted, not necessarily the maximum torque capacity of the brake.
- K = Safety factor for the tension in type of drive. Use 1.2 to 1.5 for sprockets, 2 to 4 for belts.
- C = Speed coefficient from table.
- R = Radial load allowable at 1,000 RPM.
 (The allowable radial loads for various locations on the shaft are given in the Allowable Load chart.)

Example: Determine the minimum sprocket diameter that can be used on a PRS-5S. Dimension A is 1.1 inches, the torque requirement is 20 lb.ft. and the speed is 600 RPM.

Minimum PD (in.) = $\frac{24 \times 20 \times 1.5}{1.2 \times 214}$ = 2.8 inch minimum PD

Magnetic Particle Brakes and Clutches

Allowable Overhung Load

_	A	R	A	R	A	R
Туре	(in.)	(Ibs.)	(in.)	(Ibs.)	(în.)	(lbs.)
MPB2/MPC2	.40	5	.50	4	.80	2.5
MPB15/MPC15	.40	25	.50	20	1	10
MPB25/MPC25	.40	25	.50	20	1	10
MPB70/MPC70	.40	37.5	.50	30	1.25	12
MPB120/MPC120	.50	30	1	15	1.5	10
MPB240	.50	50	1	25	1.5	16
POC/POB-0.3	.40	30	.50	28	.90	22
POC/POB-0.6	.40	45	.50	42	1.0	29
POC/POB-1.2	.40	52	.70	43	1.4	31
P0C/P0B-2.5	.40	88	.90	67	1.7	48
PTB-2.5BL3	.40	125	.90	104	1.7	82
POC/POB-5	.40	204	1.1	136	2.2	93
PTB-5BL3	.40	204	1.1	136	2.2	93
POC/POB-10	.40	313	1.3	235	2.6	159
PTB-10BL3	.40	433	1.3	368	2.6	282
POC/POB-20	.40	379	1.4	265	2.8	198
PTB-20BL3	.40	379	1.4	265	2.8	198
POC/POB-40	.40	581	1.8	432	3.6	324
POC/POB-80	.40	860	2.2	648	4.3	498

Note: This table is based on 1,000 rpm and a bearing life of 6,000 hours. Also, this table assumes that no thrust load is applied.

Speed Coefficient

Speed (rpm)	Speed Coefficient	Speed (rpm)	Speed Coefficient
50	2.74	1,000	1.00
100	2.18	1,200	0.95
200	1.72	1,400	0.89
400	1.37	1,600	0.86
600	1.20	1,800	0.82
800	1.09	2,000	0.80

Mistral Brakes

Modular design permits variable tensioning capacities!

Wichita Clutch's Mistral pneumatic tension brakes are ideally suited to the needs of the corrugating market for which it was originally designed. It is also a versatile product which is finding favor in additional tensioning applications. Wichita Clutch designers and engineers consulted extensively with mill roll stand manufacturers and users to offer a tension brake ideally suited to the needs of this particular market. The result is a compact, high performance, versatile brake capable of handling the tensioning needs of the latest machine designs, as well as existing equipment. The Mistral paves the way for increasing line speeds by 5.4 feet/sec. from 810 feet/min. (or slower) to 1,140 feet/ min.

Varying number of actuators provide optimum tension control

Each brake may be specified with a varying number of pneumatic actuators, allowing precise selection of brake torque capacity for optimum tension control.

Compact Design

Mistral brakes are compact at only 11.6" or 16.1" in diameter. Their size facilitates the pickup of small, part reels used in short batch runs. For automatic reel loading machines, Mistral offers optional infrared and speed sensor installation within the brake. And their modern, industrial styling enhances the appearance of any machine on which they are used.

Easy Access with Removable Cover Panel

By removing just three cap screws, the Mistral's front cover can be detached for easy and fast access to internal parts. Cover removal automatically disconnects both air and electricity.

Performance Curve

Mistral Brakes

Mounting Ease

Three bolts mount the brake to the arm of the mill roll stand or machine frame and an optional pilot location makes fitting to both new and existing machines a simple operation.

Safety

Mistral's integral guarding eliminates the cost and effort of installing external guards. Operator safety is further

enhanced by automatic air and electric disconnects when the front cover is removed.

Integral Cooling

A rugged, high performance, low energy usage fan is housed within the brake for high heat dissipation — a must for increased productivity through controlled tension at many roll speeds.

Fan and Connection Data

Model	Fan Voltages	Fan Power	Electric	Pneum.
200	220VAC 50/60 Hz 110VAC 50/60 Hz 24VDC	20W	M16 PG9 3/8 NPT	1/8 BSP 1/8 BSP 1/8 NPT
280	220VAC 50/60 Hz 110VAC 50/60 Hz 24VDC	25W	M16 PG9 3/8 NPT	1/8 BSP 1/8 BSP 1/8 NPT

Corrugating Press Installation

Wear Indicator

A brake wear indicator, which is conveniently located for easy visual inspection, means no down time to check remaining friction material life.

Easy Connection

Air and electrical connections are easily accessible for fast, simple installation and maintenance.

Mistral Brakes

Specifications

Model	C .)ynamic Torque	: Slippin Capacity	g V	Heat Capaci		Heat Transfer Capacity with fan		Maximum Speed	Inertia of Rotating Parts		Weight				Fan Power Rating
	(lb.	Air Pr .in.)	essure (N	m)	Conti Oper	nuous ation	:30 On/: Opera	30 Off tion		Wr²	J=mr ²	Total	Brake	Rotating) Parts	
Mistral	min* 3 psi	max. 80 psi	min* 0.2 BAR	max. 5.5 BAR	(hp)	(kW)	(hp)	(kW)	(rev./min.)	(lb.ft.²)	(kgm²)	(lb.)	(kg)	(lb.)	(kg)	(W)
200/2/LC	35	1,770	(4)	(200)	3.2	(2.4)	3.5	(2.6)	2,860	0.40	(0.017)	77	(35)	9.92	(4.5)	20
200/2	45	2,655	(5)	(300)	3.2	(2.4)	3.5	(2.6)	2,860	0.40	(0.017)	77	(35)	9.92	(4.5)	20
200/4/LC	35*	3,540	(4*)	(400)	3.2	(2.4)	3.5	(2.6)	2,860	0.40	(0.017)	77	(35)	9.92	(4.5)	20
200/4	45*	5,310	(5*)	(600)	3.2	(2.4)	3.5	(2.6)	2,860	0.40	(0.017)	77	(35)	9.92	(4.5)	20
200/6/LC	35*	5,310	(4*)	(600)	3.2	(2.4)	3.5	(2.6)	2,860	0.40	(0.017)	77	(35)	9.92	(4.5)	20
200/6	45*	7,965	(5*)	(900)	3.2	(2.4)	3.5	(2.6)	2,860	0.40	(0.017)	77	(35)	9.92	(4.5)	20
280/3/LC	45	3,540	(5)	(400)	6.4	(4.8)	7	(5.2)	2,090	1.80	(0.076)	110	(50)	20.72	(9.4)	25
280/3	55	5,310	(6)	(600)	6.4	(4.8)	7	(5.2)	2,090	1.80	(0.076)	110	(50)	20.72	(9.4)	25
280/6/LC	45*	7,080	(5*)	(800)	6.4	(4.8)	7	(5.2)	2,090	1.80	(0.076)	110	(50)	20.72	(9.4)	25
280/6	55*	10,620	(6*)	(1,200)	6.4	(4.8)	7	(5.2)	2,090	1.80	(0.076)	110	(50)	20.72	(9.4)	25
280/9/LC	45*	10,620	(5*)	(1,200)	6.4	(4.8)	7	(5.2)	2,090	1.80	(0.076)	110	(50)	20.72	(9.4)	25
280/9	55*	15,930	(6*)	(1,800)	6.4	(4.8)	7	(5.2)	2,090	1.80	(0.076)	110	(50)	20.72	(9.4)	25

* With only one set of actuators engaged

Mistral Brakes

Dimensions

200	1.00	2 3/8	5/8 x 7/32
	(25)	(60)	(18 x 4.4)
280	1.00	2 5/8	3/4 x 1/4
	(25)	(65)	(18 x 4.4)

inches (mm)

Model	Α	B (H.C.)	F	G	Н	J	K (DEG)	L	м	Ν	Р
200	11.61	10.236	.24	1/2	.98	1.97	40°	7.01	N/A	2.76	7.19
	(295)	(260)	(6)	(M12)	(25)	(50)	(40°)	(178)	(N/A)	(70)	(182.5)
280	16.14	13.976	0	5/8	1.18	2.36	20°	7.56	0.37	3.15	9.47
	(410)	(355)	0	(M16)	(30)	(60)	(20°)	(192)	(9.5)	(80)	(240.5)

Model	Mounting Pilot	Mounting Bolts Qty. and Size	Actuator/	'Inlet		No.	of
200	Dim. "C" 8.661 +.003 /000 (220 +.08 /00)	3 @ 1/2-13 UNC (3 @ M12 x 1-3/4)	Model	No. of Actuators	No. of Air Inlets	Actua Per Air AA	ators Inlets BB
	Dim. "D"		200/2	2	2	2	0
280	6.890 +.003 /000 (175 +.08 /00)	3 @ 5/8-11 UNC (3 @ M16 x 2)	200/4	4	2	2	2
		. ,	200/6	6	2	2	4
			280/3	3	2	3	0
			280/6	6	2	3	3
			280/9	9	2	3	6

Pneumatic Brakes

ModEvo Tension Brakes

Brake Discs and Cooling

The ModEvo brake disc was developed at the Bedford, UK factory using Finite Element Analysis techniques to ensure maximum strength with minimum weight. The design is optimized to make best use of the cooling air available at slow speeds, and being bidirectional, it achieves high heat dissipation capacity in either rotational direction, unlike some other brakes. An optional electric cooling fan is available where space is limited or more extreme heat handling is required.

Available in five sizes: 250 mm, 300 mm, 350 mm, 400 mm and 450 mm diameters, all discs are the same thickness and use the same brake modules and actuators. Each disc can be specified with a minimum of a single module, up to the maximum number of modules that can be fitted around the disc. This allows torquehandling capabilities ranging from a maximum of 659 lb.ft. for the 250 mm disc, up to 3181 lb.ft. for the 450 mm disc.

NOTE: If using a high speed ductile iron disc the catalog heat rating should be reduced by 10% as the thermal conductivity of the ductile iron is less than grey cast iron.

Maximum Rotational Speed								
Disc	Standard	High						
Diameter	Speed	Speed						
mm	rev./min.	rev./min.						
250	2,250	3,375						
300	1,900	2,850						
350	1,650	2,475						
400	1,450	2,175						
450	1,250	1,875						

Actuator Options

Newly developed rolling diaphragm actuators are used in ModEvo, producing more force than previous designs to allow higher torque ratings. However, the sensitivity for which rolling diaphragms are favored is not compromised. Three actuator options are available, offering clamping forces of 100%, 60% or 25%.

The finned, die cast aluminum brake module is common to all brake disc diameters. Each module houses two pairs of actuators, and allows friction pads to be changed quickly without dismantling the module.

ModEvo 300/8 with Fan

Brake Size (fan Diameter)	24v DC	115v AC	230v AC
250 (150 mm)	Yes	Yes	Yes
300 (150 mm)	Yes	Yes	Yes
350 (150 mm)	Yes	Yes	Yes
400 (150 mm)	Yes	Yes	Yes
(200 mm)	not available	Yes	Yes
450 (150 mm)	Yes	Yes	Yes
(200 mm)	not available	Yes	Yes
(250 mm)	not available	Yes	Yes

Optional Guard

The optional guard has a plastic front with 'ModEvo' molded in and a metal ventilated perimeter.

Mounting is by four brackets on customer's machine frame.

The center of the guard is designed such that it may be cut-out by customer to suit the diameter of the shaft in through-shaft installations.

Pneumatic Brakes

ModEvo Model 250

Model		Minimum Torques						
		Minimum (3 PSI) (0.2 Bars) Ib.ft.Nm						
	25% Actuators	60% Actuators	100% Actuators					
250/1	1 1	2 2	3 4					
250/2*	1	4	6					
	2	5	8					
250/4*	3	7	12					
	4	10	16					
250/6*	4	11	18					
	6	14	24					
	Maximum Torques Maximum (87 PSI) (6 Bars) Ib.ft.Nm							
250/1	22	53	88					
	30	71	119					
250/2*	44 60	110 143	176 238					
250/4*	88	211	352					
	72	286	477					
250/6*	132	317	528					
	179	429	715					

* For single actuator operation torques for 250/1 are applicable.

Model ²	Speed ¹ Max.		Heat Capacity for Effective Cooling Speeds							Wei	ght
			Continuous Duty** HP(kW)							lbs.(kg)	
	RPM	50 RPM	100 RPM	200 RPM	300 RPM	400 RPM	500 RPM	600 RPM		Total	Rotating
250/1	2250	1.34	1.61	2.14	Without Far 2.68	3.08	3.49	3.62		27.337 (12.4)	
250/2	2250	(1.0)	(1.2)	(1.6)	(2.0)	(2.3)	(2.6)	(2.7)	1.424	29.101 (13.2)	19.180
250/4	2250	4.56	W 4.69	Ith Electric 5.09	Cooling Fan 5.36	, 150 mm di 5.36	a. 5.36	5.36	(0.060)	38.801 (17.6)	(8.7)
250/6	2250	(3.4)	(3.5)	(3.8)	(4.0)	(4.0)	(4.0)	(4.0)		48.772 (22.1)	

" For intermittent duty, consult the factory.

¹ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.

² When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

Note: Limit maximum operating temperatures of surfaces (rotor, friction pads, actuators, etc.) to 300°F or less. Temperatures above 300°F may cause damage and failure of components. Failure to do so will void warranty.

Pneumatic Brakes

ModEvo Model 300

Model	Minimum Torques							
		Minimum (3 PSI) (0.2 Bars) Ib.ft.Nm						
	25% Actuators	60% Actuators	100% Actuators					
300/1	1 1	2 3	4 5					
300/2*	23	4 6	7 10					
300/4*	4	9	15					
	5	12	20					
300/6*	6	13	22					
	8	18	30					
300/8*	7	18	30					
	10	24	40					
		Maximum Torques Minimum (87 PSI) (6 Bars) Ib.ft.Nm						
300/1	27	66	110					
	37	89	149					
300/2*	55	132	220					
	75	179	298					
300/4*	110	263	439					
	149	357	595					
300/6*	165	395	659					
	223	536	893					
300/8*	220	527	879					
	298	715	1191					

* For single actuator operation torques for 300/1 are applicable.

Model ²	Speed ¹ Max.	Heat Capacity Cooling		Inertia Rotating Parts	We	ight	
		Continuous D	lb.ft. ² (kg.m ²)	lbs.(kg)			
	RPM	50 100 200 30 RPM RPM RPM RP	00 400 500 M RPM RPM	600 RPM		Total	Rotating
300/1	1900	Withou		38.140 (17.3)			
300/2	1900	2.41 2.68 3.35 4.0 (1.8) (2.0) (2.5) (3.3)	02 4.56 5.09 0) (3.4) (3.8)	5.63 (4.2)		39.904 (18.1)	
300/4	1900	With Electric Coolin	g Fan, 150 mm dia.		2.966 (0.125)	49.604 (22.5)	29.883 (13.6)
300/6	1900	6.30 6.70 6.70 6.7 (4.7) (5.0) (5.0) (5.0)	70 7.37 8.04 0) (5.5) (6.0)	8.04 (6.0)		59.525 (27.0)	
300/6	1900					69.446 (31.5)	

" For intermittent duty, consult the factory.

¹ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.

² When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

Note: Limit maximum operating temperatures of surfaces (rotor, friction pads, actuators, etc.) to 300°F or less.

Temperatures above 300°F may cause damage and failure of components. Failure to do so will void warranty.

Pneumatic Brakes

ModEvo Model 350

Model	Minimum Torques							
		Minimum (3 PSI) (0.2 Bars) Ib.ft.Nm						
	25% Actuators	60% Actuators	100% Actuators					
350/1	1 2	3 4	4 6					
350/2*	7	18	30					
	3	7	12					
350/4*	1	3	9					
	6	14	24					
350/6*	7	16	27					
	9	22	36					
350/8*	9	21	35					
	12	29	48					
350/10*	11	27	44					
	15	36	60					
		Maximum Torques Minimum (87 PSI) (6 Bars) Ib.ft.Nm						
350/1	33	80	133					
	45	108	181					
350/2*	67	160	266					
	90	217	361					
350/4*	133	320	534					
	181	434	723					
350/6*	200	480	800					
	271	650	1084					
350/8*	267	640	1066					
	361	867	1445					
350/10*	333	800	1334					
	452	1084	1807					

* For single actuator operation torques for 350/1 are applicable.

Model ²	Speed ¹ Max.		Heat Capacity for Effective Cooling Speeds						Inertia Rotating Parts	Weight	
			Continuous Duty** HP(kW)							lbs.(kg)	
	RPM	50 RPM	100 RPM	200 RPM	300 RPM	400 RPM	500 RPM	600 RPM		Total	Rotating
350/2	1650		Without Fan							57.982 (24.8)	
350/4	1650	3.22 (2.4)	3.49 (2.6)	4.69 (3.5)	5.36 (4.0)	6.17 (4.6)	7.37 (5.5)	8.04 (6.0)		69.005 (29.2)	
350/6	1650		With Electric Cooling Fan, 150 mm dia.						5.458 (0.230)	80.248 (33.7)	46.958 (20.3)
350/8	1650	7.77 (5.8)	8.45 (6.3)	8.71 (6.5)	8.71 (6.5)	8.71 (6.5)	8.71 (6.5)	8.71 (6.5)		91.271 (38.2)	
350/10	1650					-				102.294 (42.7)	

 $\ddot{}$ For intermittent duty, consult the factory.

¹ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity

reduced by 10% when high speed disc is used. ² When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

Note: Limit maximum operating temperatures of surfaces (rotor, friction pads, actuators, etc.) to 300°F or less.

Temperatures above 300°F may cause damage and failure of components. Failure to do so will void warranty.

Pneumatic Brakes

ModEvo Model 400

Model		Minimum Torques							
		Minimum (3 PSI) (0.2 Bars) Ib.ft.Nm							
	25% Actuators	60% Actuators	100% Actuators						
400/1	1 2	3 4	5 7						
400/2*	3 4	6 8	10 14						
400/4*	5	12	21						
	7	17	28						
400/6*	8	19	32						
	11	26	43						
400/8*	11	25	42						
	14	34	57						
400/10*	13	31	52						
	18	43	71						
400/12*	16	38	63						
	21	51	85						
		Maximum Torques Minimum (87 PSI) (6 Bars) Ib ff Nm							
400/1	39	94	157						
	53	128	213						
400/2	79	189	314						
	107	256	426						
400/4	157	377	629						
	213	511	852						
400/6	236	566	943						
	320	767	1278						
400/8	314	755	1258						
	426	1022	1704						
400/10	393	943	1572						
	533	1278	2130						
400/12	472	1132	1886						
	639	1534	2556						

* For single actuator operation torques for 400/1 are applicable.

Model ²	Speed ¹ Max.		Heat Capacity for Effective Cooling Speeds							Wei	ght
			Continuous Duty** HP(kW)							lbs.(kg)	
	RPM	50 RPM	100 RPM	200 RPM	300 RPM	400 RPM	500 RPM	600 RPM		Total	Rotating
400/2	1450									69.005 (31.3)	
400/4	1450	3.62	4.29	6.03	Without Fan 6.70	7.64	8.71	9.38		78.705 (35.7)	
400/6	1450	(2.7)	(3.2)	(4.5)	(5.0)	(5.7)	(6.5)	(7.0)	9.492	88.626 (40.2)	61.509
400/8	1450		, w	/Ith Electric	Cooling Fan	, 150 mm di	ia.		(0.400)	98.547	(26.8)
		8.18	8.98	9.38	10.05	10.72	10.72	10.72		(44.7)	
400/10	1450	(6.1)	(6.7)	(7.0)	(7.5)	(8.0)	(8.0)	(8.0)		108.467 (49.2)	
400/12	1450									118.168 (53.6)	

** For intermittent duty and thermal ratings using 200 mm fan, consult the factory

¹ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity

reduced by 10% when high speed disc is used.

² When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

Note: Limit maximum operating temperatures of surfaces (rotor, friction pads, actuators, etc.) to 300°F or less. Temperatures above 300°F may cause damage and failure of components. Failure to do so will void warranty.

Pneumatic Brakes

ModEvo Model 450

Model	Minimum Torques						
		Minimum (3 PSI) (0.2 Bars) Ib.ft.Nm					
	25% Actuators	60% Actuators	100% Actuators				
450/1	1	4	6				
	2	5	8				
450/2*	3	7	12				
	4	10	16				
450/4*	6	15	24				
	8	20	33				
450/6*	9	22	36				
	12	29	49				
450/8*	12	29	48				
	16	39	65				
450/10*	15	36	61				
	21	49	82				
450/12*	18	43	72				
	25	59	98				
450/14*	21	51	85				
	29	69	115				
		Maximum Torques Minimum (87 PSI) (6 Bars) Ib.ft.Nm					
450/1	45	108	181				
	61	147	246				
450/2*	91	217	362				
	123	295	491				
450/4*	181	435	725				
	246	589	982				
450/6*	272	652	1086				
	368	883	1472				
450/8*	362	869	1449				
	491	1178	1963				
450/10*	453	1087	1811				
	614	1472	2454				
450/12*	543	1304	2173				
	736	1767	2945				
450/14*	634	1521	2535				
	859	2061	3435				

* For single actuator operation torques for 450/1 are applicable.

Model ²	Speed ¹ Max.		Heat Capacity for Effective Cooling Speeds							Wei	ght
			Continuous Duty** HP(kW)							lbs.(kg)	
	RPM	50 RPM	100 RPM	200 RPM	300 RPM	400 RPM	500 RPM	600 RPM		Total	Rotating
450/2	1250									82.673 (37.5)	
450/4	1250		Without Fan							92.374 (41.9)	
450/6	1250	3.89 (2.9)	4.83 (3.6)	6.84 (5.1)	7.91 (5.9)	8.71 (6.5)	10.32 (7.7)	11.13 (8.3)	14 475	102.294 (46.4)	70 750
450/8	1250		With Electric Cooling Fan, 150 mm dia.							112.215 (50.9)	(33.0)
450/10	1250	8.85	9.12	9.38	9.65	10.72	11.66	12.47		122.136 (55.4)	
450/12	1250	(6.6)	(6.8)	(7.0)	(7.2)	(8.0)	(8.7)	(9.3)		131.836 (59.8)	
450/14	1250									141.757 (64.3)	

** For intermittent duty and thermal ratings using 200 mm or 250 mm fan, consult the factory.

⁴ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.

⁶ When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

Note: Limit maximum operating temperatures of surfaces (rotor, friction pads, actuators, etc.) to 300°F or less. Temperatures above 300°F may cause damage and failure of components. Failure to do so will void warranty.

ModEvo Dimensions

Side View

Dimensions: inches (mm)

Size	250	300	350	400	450
	9.843	11.811	13.78	15.748	17.717
DA - DISC SIZE	(250)	(300)	(350)	(400)	(450)
ØP Ovorall	12.756	14.528	16.339	18.149	20.000
	(324)	(369)	(415)	(461)	(508)
	11.752	13.524	15.315	17.146	18.996
ØC - BUIL P.C.D	(298.5)	(343.5)	(389)	(435.5)	(482.5)
(AD Clearance Diameter	3.543	5.512	7.480	9.449	11.417
ØD - Clearance Diameter	(90)	(140)	(190)	(240)	(290)
II An Cont Porc	0.984	0.984	0.984	0.984	0.984
U - AS Cast Bure	(25)	(25)	(25)	(25)	(25)
Meximum Deve	2.165	3.110	4.606	5.354	6.063
Maximum Bore	(55)	(79)	(117)	(136)	(154)
Z" - Angular Position	120°	90°	72°	60°	51.4°
Maximum Number of Brake Modules	3	4	5	6	7
Wichita Generic Drawing Number	73125-000	73130-000	73141-000	73141-000	73145-000
U	39.37	47.25	55.12	63.00	70.87
Hose Length/Module 15667-020 W4 6977	(1,000)	(1,200)	(1,400)	(1,600)	(1,800)

Sensors

Ultrasonic Sensors

Introduction

Ultrasonic signals are like audible sound waves, except the frequencies are much higher.

Ultrasonic transducers have piezoelectric crystals which resonate to a desired frequency and convert electric energy into acoustic energy and vice versa.

Diagram A shows how sound waves transmitted in the shape of a cone are reflected back to the transducer. At this stage, an output signal is produced to perform some kind of indicating or control function.

A minimum distance from the sensor is required to provide a time delay so that the "echoes" can be interpreted. Variables which can affect the operation of an ultrasonic sensor include: target surface angle, reflective surface roughness, change in temperature or humidity. The targets can have any kind of reflective form and even round objects are an acceptable target.

Advantages of Ultrasonic Sensors

- Discrete distances to moving objects can be detected and measured
- Less affected by target materials and surfaces
- Not affected by color
- Solid state virtually unlimited maintenance-free life
- Small objects can be detected over longer distances
- Resistance to external disturbances such as vibration, infrared radiation, ambient noise, and EMI radiation

Applications for Ultrasonic Sensors

- Loop control
- Roll diameter, tension control, winding and unwind
- Web break detection
- Level detection/control
- Presence detection

UT30 Series

The Warner Electric UT30 Series Ultrasonic Sensors feature three types of sensors:

- Range measurement with analog output
- Proximity detection with range and hysteresis control
- Long range measurement with analog output
- CE Approved

Range Measurement with

Analog Output

This type of sensor is capable of both 4–20mA and/or 0–10V output signals, with an added feature of inverting these signals to 20–4mA and for 10–0V by means of simply wiring the units in the instructed way. Long range sensors come with current (mA) output signals only.

A range measurement sensor works in a very precise, easily controllable way. Precise distance of an object moving to and from the transducer is measured via time intervals between transmitted and reflected bursts of ultrasonic sound. The internal circuit reads this time and then proportionately provides an output in either MAs or volts to that distance.

General Installation Information

Target Angle

This term refers to the "tilt response" limitations of a given sensor. Since ultrasonic sound waves reflect off the target/object, target angles indicate acceptable amounts of tilt for a given sensor. If an application requires a target angle beyond the capabilities of a single sensor, two sensors can be teamed to provide even a broader angle of tilt.

Beam Spread

This term is defined as the area in which a round wand will be sensed if passed through the target area. This is the maximum spreading of the ultrasonic sound as it leaves the transducer.

Sensors

Ultrasonic Sensors

Analog Output

- 4–20mA and 0–10V
- Wire selectable inverted or non-inverted outputs

Specifications

Sensing Range

Ordering Information Model Description Part Number

Electrical Data

Voltage Range (min./max.) Input Current Transducer Frequency Short Circuit Protected LED – (strength indicator) Response Time Range Control

Mechanical Data

Dimensions

Mounting Bracket

1.421 ^{+ .010} _{- .000} Ø

2.312

.015

1.375

.015

M 30 ST

Temperature Range (min./max.) Degree of Protection Body Material Termination Cable 6 ft. (2m) Plug/socket Accessories Humidity

> 1.18[°] (30 mm

> > 1.875

.015

6

4-40" (101..1016mm)

UT30UP-DCA4-1016-CSI 7600-448-001

20–30 VDC reverse polarity protected 50mA 212 KHz Yes Yes – green to red; Page 130 30 mSec Zero and span (2 potentiometers)

-25°F to +140°F (-31.7°C to +60°C) IP65/NEMA12 Valox plastic PVC 4 x 22 gauge Versions available to order 1) Brackets 0-95% non-condensing

(104 mm)

.937

.015

.06 Max. R

_ 1.312

.015

Threaded plastic barrel M 30 x 1.5

8–80" (203..2032mm)

UT30UP-DCA4-2032-CSI 7600-448-002

20–30 VDC reverse polarity protected 50mA 150 KHz Yes Yes – green to red; Page 130 50 mSec Zero and span (2 potentiometers)

-25°F to +140°F (-31.7°C to +60°C) IP65/NEMA12 Valox plastic PVC 4 x 22 gauge Versions available to order 1) Brackets 0-95% non-condensing

R = 1/2 Width

.937 Ref

.50

.360 .015

Accessories

Brackets for M 30 x 1.5

Ordering Information

Plastic – BK5-D34PA Part Number: 596-0223-041

Metal – M 30 ST Part Number: 7430-448-003

*Power Supply - NG24 110/220 VAC Input 24 VDC @ 300mA Output Part Number: 7500-448-020

Note: Provides output to appropriate analog input control. (Ex. TCS-200-1)

Wiring Data

.221,

2 Places

1.000

.75

1.312 -

.015

.1046

.0060

2 3 1 2

.015

1.375

.015

*Note: Some controls do not have 24 VDC outputs for the ultrasonic sensor power. These controls require the use of the NG 24 power supply

Sensors

Ultrasonic Sensors

Operation and Setup

Minimum Analog Ranging

Minimum analog ranging is when you desire to have the full 4-20 mA or 0-10V output over the minimum 5-inch sensing span. Five inches of minimum sensing span can be adjusted anywhere in the sending range. For example 10"-15" or 25"-30". To make this adjustment, place the target at the minimum sensing range and adjust P1 to 4mA. Then move the target to the maximum sensing range and adjust P2 to 20mA. Recheck the ratings and make appropriate adjustments, if necessary. See Diagram A.

Maximum Analog Ranging

Analog sensing in the maximum range means utilizing the entire 36" span (4"-40") and 72" span (8"-80"). To adjust, set the target at the minimum range, either 4" or 8", and adjust P1 to 4mA. Move the target to the maximum range and adjust P2 to 20mA. Recheck readings and make appropriate adjustments, if necessary. See Diagram B.

Inverted Analog Outputs

Inverted outputs means that the 4-20mA or 0-10V output signal will decrease proportionally with distance. To adjust, place the target at the minimum sensing distance and adjust P1 to 20mA. Place the target at the maximum sensing distance and adjust P2 to 4mA. Re-check readings and make appropriate adjustments, if necessary. See Diagram C.

LED Operation

The LED is green when the unit is powered. It will fade to red as a target is detected with increased intensity as more signal is being reflected from the target. Note: Any color other than green equals a workable signal level.

Adjustment Pots Zero and Span Control

Beam Spread vs. Target Distance

Target

Diagram C

Bushing Part Numbers

		Bushing	Bushing Number		
Shaft Size	Keyway Size	Warner Electric	Dodge		
1/2	1/8 x 1/16	180-0116			
9/16	1/8 x 1/16	180-0117			
5/8	3/16 x 3/32	180-0118			
11/16	3/16 x 3/32	180-0119			
3/4	3/16 x 3/32	180-0120			
13/16	3/16 x 3/32	180-0121	1215		
7/8	3/16 x 3/32	180-0122			
15/16	1/4 x 1/8	180-0123			
1	1/4 x 1/8	180-0124			
1-1/16	1/4 x 1/8	180-0125			
1-1/8	1/4 x 1/8	180-0126			
1-3/16	1/4 x 1/8	180-0127			
1-1/4	1/4 x 1/8	180-0128			
1/2	1/8 x 1/16	180-0131			
9/16	1/8 x 1/16	180-0132			
5/8	3/16 x 3/32	180-0133			
11/16	3/16 x 3/32	180-0134			
3/4	3/16 x 3/32	180-0135			
13/16	3/16 x 3/32	180-0136			
7/8	3/16 x 3/32	180-0137			
15/16	1/4 x 1/8	180-0138			
1	1/4 x 1/8	180-0139			
' 1-1/16	1/4 x 1/8	180-0140	1615		
1-1/8	1/4 x 1/8	180-0141	1015		
1-3/16	1/4 x 1/8	180-0142			
1-1/4	1/4 x 1/8	180-0143			
1-5/16	5/16 x 5/32	180-0144			
1-3/8	5/16 x 5/32	180-0145			
1-7/16	3/8 x 3/16	180-0146			
1-1/2	3/8 x 3/16	180-0147			
1_9/16	3/8 x 3/16	180-0148			
1-5/8	3/8 x 3/16	180-0149			
1/2	1/2 v 1/10	180 0195			
0/16	1/0 X 1/10	100-0100			
9/10 E/9	1/0 X 1/10 2/16 x 2/20				
0/0 11/16	3/10 X 3/32	100-0107			
0//1	3/10 X 3/32				
১/4 12/16	3/10 X 3/32	100-0109			
13/10	3/10 X 3/32	180-0190			
1/0	3/10 X 3/32	100-0191			
10/10 1	1/4 X 1/ð 1/4 - 1/0	100-0192			
1 1/10	1/4 X 1/8	100-0193	0547		
1-1/10	1/4 X 1/8	100-0194	2517		
1-1/δ 1-0/10	1/4 X 1/8	100-0195			
1-3/10	1/4 X 1/8	100-0196			
1-1/4	1/4 X 1/δ	180-0197			
1 0/0	5/10 X 5/32	180-0198			
1-3/8 1-7/10	5/10 X 5/32	180-0199			
1-//lb	3/8 X 3/16	180-0200			
1-1/2	3/8 x 3/16	180-0201			
1-9/16	3/8 x 3/16	180-0202			

		Bushing Number		
Shaft Size	Keyway Size	Warner Electric	Dodge	
1-5/8	3/8 x 3/16	180-0203		
1-11/16	3/8 x 3/16	180-0204		
1-3/4	3/8 x 3/16	180-0205		
1-13/16	1/2 x 1/4	180-0206		
1-7/8	1/2 x 1/4	180-0207		
1-15/16	1/2 x 1/4	180-0208		
2	1/2 x 1/4	180-0209		
2-1/16	1/2 x 1/4	180-0210	2517	
2-1/8	1/2 x 1/4	180-0211		
2-3/16	1/2 x 1/4	180-0212		
2-1/4	1/2 x 1/4	180-0213		
2-5/16	5/8 x 5/16	180-0214		
2-3/8	5/8 x 5/16	180-0215		
2-7/16	5/8 x 5/16	180-0216		
2-1/2	5/8 x 5/16	180-0217		
15/16	1/4 x 1/8	180-0262		
1	1/4 x 1/8	180-0263		
1-1/16	1/4 x 1/8	180-0264		
1-1/8	1/4 x 1/8	180-0265		
1-3/16	1/4 x 1/8	180-0266		
1-1/4	1/4 x 1/8	180-0267		
1-5/16	5/16 x 5/32	180-0268		
1-3/8	5/16 x 5/32	180-0269		
1-7/16	3/8 x 3/16	180-0270		
1-1/2	3/8 x 3/16	180-0271		
1-9/16	3/8 x 3/16	180-0272		
1-5/8	3/8 x 3/16	180-0273		
1-11/16	3/8 x 3/16	180-0274		
1-3/4	3/8 x 3/16	180-0275		
1-13/16	1/2 x 1/4	180-0276		
1-7/8	1/2 x 1/4	180-0277		
1-15/16	1/2 x 1/4	180-0278	3030	
2	1/2 x 1/4	180-0279		
2-1/16	1/2 x 1/4	180-0280		
2-1/8	1/2 x 1/4	180-0281		
2-3/16	1/2 x 1/4	180-0282		
2-1/4	1/2 x 1/4	180-0283		
2-15/16	5/8 x 5/16	180-0284		
2-3/8	5/8 x 5/16	180-0285		
2-7/16	5/8 x 5/16	180-0286		
2-1/2	5/8 x 5/16	180-0287		
2-9/16	5/8 x 5/16	180-0288		
2-5/8	5/8 x 5/16	180-0289		
2-11/16	5/8 x 5/16	180-0290		
2-3/4	5/8 x 5/16	180-0291		
2-13/16	3/4 x 3/8	180-0292		
2-7/8	3/4 x 3/8	180-0293		
2-15/16	3/4 x 3/8	180-0294		
3	3/4 x 3/8	180-0295		
-				

Dodge is a registered trademark of Reliance Electric Company

Analog (as in analog signal)

A signal that varies in amplitude or voltage over a given range.

Analog Follower Control

A control that accepts a voltage or current of varying amplitude and produces an identical, but stronger, signal at the output, suitable for driving a brake.

Butt Splice

A splice in which two webs are placed end to end without overlapping, and adhered together by a piece of adhesive placed over both. Most common with paperboard.

Controlled Stop

Stopping of the roll and web while maintaining tension at the prescribed level.

Core

The hollow center (usually made of heavy paperboard) on which the roll of material is wound.

Core Diameter

The smallest diameter of an unwind roll.

Cutter/Creaser

A machine used in the production of folding cartons. It uses sharp knives to cut through the board and dull knives to crease the board along a fold line.

Dancer

A movable, often pivoted, roll placed in a loop of the web, which is weighted or loaded to add tautness or tension to the web. Often used as part of a feedback loop to control brake operation.

Die Cutter

A machine which cuts or stamps paper or board to a specified size or shape with a steel die. The die is part of an impression cylinder in a rotary die cutter.

Duplex

Paper or paperboard that has a different color, texture or finish on either side. Also sometimes applied to any multi-ply paperboard.

Electro-Pneumatic Modulator

A device that modulates, or controls, an air brake in response to a set of control parameters.

Emergency Stop (E-Stop)

General term to describe immediate stop of a converting or printing machine due to a malfunction or unsafe condition. Normally done in fastest time possible.

Equipment Sizing or Sized

A method of tensioning a web at the in-feed that is sometimes used in printing operations. An equipment sized in-feed roller is slightly smaller than the printing impression cylinder. This creates a back tension in the web since each rotation of the printing impression cylinder pulls more web than is being fed by each rotation of the in-feed roller. Not as common as a variable sized in-feed since it requires changing the in-feed roller along with the impression cylinder.

Festoon

A reserve area consisting of several loops of stored web. This reserve is drawn down to feed the converting process while roll feed is interrupted for splicing.

Force Transducer

A device that senses the magnitude of a load upon it (such as a tension load) and sends a corresponding signal out. Also called a load cell.

Grabbiness

"Stick-slip," or lack of smoothness during slip operation of a braking system.

Heat Dissipation (in a brake)

The ability of a brake to release heat generated by friction. Dissipation usually increases with RPM. Dissipation can also be increased by forced cooling, e.g., by a fan.

Inertia Stop

An emergency stop where the prime objective is to get the unwind roll and machine to a rapid stop, disregarding any control of the web condition. The inertia of the roll is the largest factor in determining speed of stop, for a given machine braking system.

Lap Splice

A splice in which the ends of two webs are overlapped and adhered together by a piece of adhesive placed on the contact side of one.

Load Cell

See Force Transducer.

Nip Rolls

A pair of driven, rotating rollers which act to pull the web into or through the converting process.

Pivot Point

The central point of rotation, as in a dancer arm.

Pivot Point Sensor

A sensor mounted at the pivot point of the dancer arm, which determines which direction the dancer is moving, and where it is in its arc of travel.

Register

The exact, corresponding placement of successively printed images on the web of material.

Sheeter

A machine that cuts a web of material into individual sheets.

Slip

The relative motion, or sliding, between the two members of a braking system. In tensioning, the smoothness of slip is critical to maintaining tension.

Slitter-Rewinder

A machine that unwinds the wide rolls of material, slits them to narrow widths, and rewinds them into narrow rolls.

Splice

The joining of the ends of two webs to make one continuous web.

Wrap Angle

the roller.

Refers to the wrap of the web around

Expressed as "degrees of contact" with

a roller, especially a dancer roller.

Splicer

A machine with two (or more) unwind rolls of material. As one roll expires, the other is "spliced" to the end of the first, to provide a continuous web of material to the process. Splicers are referred to as "zero-speed" if the splice occurs when the new roll is stopped, with paper feeding from a festoon storage system. A 'flying splicer" is one where the new roll is accelerated to line speed before splicing the roll, and roll feed is continuous.

Taper Tension

Constantly decreasing tension on winders to help eliminate telescoping and core crushing.

Tensile Strength

The force, parallel to the plane of the specimen, required to break a given length and width of material.

Tension

The tautness in a web of paper or material. The press or process produces a "pull-through" effect, which is countered by the unwind brake. Each material has an optimum tautness, or tension, and it is the job of the tension system to maintain this tension.

Torque

The braking force which holds the unwind roll from unwinding. Usually referred to in pound-feet or pound-inches of torque produced by the brake.

Transducer

A device that changes one type of signal into another. In tensioning, the most common types are electric-to-pneumatic transducers, and force transducers. See Force Transducer.

Web

A continuous strand of material coming from the roll in its full width. It remains in web form until 'terminated" by a sheeter, die-cutter or other device.

Web Break Detectors

Sensing devices that monitor the web and signal a shutdown or E-stop if a web break occurs. This is a good photoelectric application.

Web Draw

Tension or tautness induced in the web by the pulling action of the printing press or process, resulting in web movement in that direction.

Conversion Factors Millimeters x 0.03937 = inches Inches x 25.4 = millimeters Centimeters x 0.3937 = inches Inches x 2.54 = centimeters Meters/minute x 3.280 = feet/minuteFeet/minute x 0.3048 = meters/minute Kilograms x 2.205 = poundsPounds x 0.4536 = kilogramsNewtons x 0.22482 = poundsPounds x 4.448 = Newtons Watts x 0.001341 = horsepower Horsepower x 746 = watts Kilogram-meter² x 23.753 = pound-feet² Pound-feet² x 0.0421 = kilogram-meter² Newton-meter x 0.722 = pound-feet Pound-feet x 1.385 = Newton-meter Grams/meter² x 0.613495 = pounds (basis weight) Pounds (basis weight) x 1.630 = grams/meter² 36,000 x roll weight Lineal feet = roll width x basis weight lineal feet Approximate roll unwind time = linear speed

Effective cylinder force at a given air pressure

$$F_{CYL (lbs.)} = P_{PSI} x \quad (cylinder piston diameter) in (in)^2 x \pi$$
4
Example: PSI = 30
CYL dia. = 2 in.
F = 30 x $\left(\frac{2^2 x \pi}{4}\right)$ = 94.2 lbs.

Index

By Part Number

Part Number	Model Number	Page
248-8000-003		37
295-0019		84
295-0021		84
295-0023		84
295-0020		04 84
295-0028		84
295-0029		84
295-0030		84
295-0031		84
5161-101-008		67
5161-271-021	ATTC25	67
5161-271-022	ATTC25	67
5161-271-023	ATTC25	67
5161-271-024	ATTC25	67
5161-271-025	ATTC25	67
5161-2/1-026	ATTC25	67
5161 271 028	ATTC25	67
5162-101-004		67
5162-101-008		67
5162-101-009		67
5162-271-021	ATTC55	67
5162-271-022	ATTC55	67
5162-271-023 5162-271-024	ATTC55	ט/ 67
5162-271-025	ATTC55	67
5162-271-026	ATTC55	67
5162-271-027	ATTC55	67
5162-271-028	ATTC55	67
5163-101-004		67
5163-101-008		67
5163-101-009	ATTC115	67
5163-271-022	ATTC115	67
5163-271-023	ATTC115	67
5163-271-024	ATTC115	67
5163-271-025	ATTC115	67
5163-271-026	ALICI15	6/ 67
5163-271-028		67
5191-10	ATTR25	67
5191-11	ATTB25	67
5191-12	ATTB25	67
5191-13	ATTB25	67
5191-6 5101 7	ATTR25	67
5191-7 5191-8	ΑΙ ΙΒΖΟ ΔΤΤΒ25	07 67
5191-9	ATTB25	67
5192-10	ATTB55	67
5192-11	ATTB55	67
5192-12	ATTB55	67
5192-13	ATTR55	67
5192-0	ATTR55	67
5192-8	ATTB55	67
5192-9	ATTB55	67
5193-10	ATTB115	67
5193-11	ATTB115	67
5193-12 5102 12	ALIB115	67
5193-13 5193-6		07 67
5193-7	ATTB115	67
5193-8	ATTB115	67
5193-9	ATTB115	67
5216-101-003		85
5216-101-004		85
5216-101-005		85 95
5210-101-008 5216-101-010		00 85
5216-101-011		85
5216-101-012		85
5216-101-013		85
5216-101-018		85

	-	
Part Number	Model Number	Page
5216-101-019		85
5216-101-020		84
5216-101-020		85
5216-101-021		84
5216-101-021		85
5216-101-022		84
5216-101-022		85
5216-101-023		84
5216-101-024		84
5216-101-025		84
5216-101-026		84
5216-101-027		84
5216-101-028		84
5216-101-029		84
5216-101-030		84
5216-111-001		85
5216-111-003		85
5216-111-004		85
5216-295-001		85
5216-295-002		85
5216-295-003		85
5216-295-004		84
5216-295-005		84
5216-295-007		84
5216-295-026		84
5216-631-004		85
5216-631-009		84
5216-631-010		84
5216-631-013		84
5216-631-031		84
5310-2	TB-500	60
5310-24	TB-500	60
5311-2	TB-825	60
5311-24	TB-825	60
5312-1	TB-1000	60
5312-24	TB-1000	60
5313-1	TB-1225	60
5313-24	TB-1225	60
5314-1	TB-1525	60
5314-24	TB-1525	60
5365-10	TB-260	60
5365-11	TB-260	60
5365-12	TB-260	60
5365-2	TB-260	60
5365-3	TB-260	60
5365-5	TB-260	60
5365-6	TB-260	60
5365-8	TB-260	60
5365-9	TB-260	60
5367-10	TB-425	60
5367-11	TB-425	60
5367-12	TB-425	60
5367-5	TB-425	60
5367-6	TB-425	60
5367-7	TB-425	60
5367-8	TB-425	60
5367-9	TB-425	60
5375-1	TB-170	60
5375-2	TB-170	60
5375-3	TB-170	60
5375-4	TB-170	60
5375-5	TB-170	60
5375-6	TB-170	60
5401-169-141	PTB2.5 BL3	105
5401-169-151	PTB5 BL3	105
5401-169-161	PTB10 BL3	105
5401-169-171	PTB20 BL3	105
5401-169-211	POB 0.3	107
5401-169-221	POB 0.6	107
5401-169-231	POB 1.2	107
5401-169-241	POB 2.5	107
5401-169-251	POB 5	107
5401-169-261	POB 10	107
5401-169-271	POB 20	107
5401-169-281	POB 40	107

Part Number	Model Number	Page
5401-169-291	POB 80	107
5401-169-331	PRB1.2H	108
5401-169-341	PRB2.5H	108
5401-169-351	PRB5H	108
5401-169-361	PRB10H	108
5401-169-371	PRB20H	108
5401-270-111	PMC 10	109
5401-270-121	PMC 20	109
5401-270-131	PMC 40	110
5401-270-211	P0C0.3	114
5401-270-221	P0C0.6	114
5401-270-231	P0C1.2	114
5401-270-241	P002.5	114
5401-270-251	P005	114
5401-270-201	P0010	114
5401-270-271	P0020	114
5401-270-201		114
5401-270-291		114
5401-270-321		112
5401-270-331	PHC2 5B	112
5401-270-351	PHC5B	112
5401-270-361	PHC10B	112
5401-270-371	PHC20B	112
6910-101-001		37
6910-101-007	STATE SWITCH	53
6910-448-013	MCS-166	53
6910-448-014	MCS-203	49
6910-448-015	P/M HOUSING	54
6910-448-016	W/S HOUSING	54
6910-448-017	MCS 204	47
6910-448-018	P/M HOUSING	54
6910-448-019	W/S HOUSING	54
6910-448-025	TCS-167	53
6910-448-026	TCS-210	50
6910-448-027	TCS-220	48
6910-448-028	P/M HOUSING	54
6910-448-029	W/S HOUSING	54
6910-448-032	TCS-168	53
6910-448-042	TCS-310	52
6910-448-055	105 200	47
6910-448-066	MUS-207	51
0910-448-080		47
6910-448-087	165 200-1H	47
0910-440-109 6010 449 205		41
6010 440-303		41
7330-448-002	TCS-605-1	40
7330-448-002	TCS605-1	37
7330-448-003	TCS-605-5	37
7330-448-003	TCS605-5	37
7330-448-004	TCS605-2	37
7430-448-003	NG24	131
7600-448-001	UT30UP-DCA4-1016-CSI	131
7600-448-002	UT30UP-DCA4-2032-CSI	131

Index By Part Number

De et Neverle e	NA I - I NI 1	Desig
Part Number	Model Number	Page
MB1-316	MB1	88
MB1.5-14	MB1.5	88
MB2-14	MB2	88
MB3-38	MB3	88
MB4-58	MB4	88
MB5-1	MB5	88
MB5.5-1	MB5.5	88
MB6-1	MB6	88
MB9-1	MB9	88
MU1.5-14	MULS	88
MC2-14	MC2	88
MC4 12	MC4	88
MC4-12 MC4-38	MC4	00 88
MC4-58	MC4	88
MC5-1	MC5 5	88
MC5-1	MC5	88
MC5-12	MC5	88
MC5-34	MC5	88
MC5-38	MC5	88
MC5-58	MC5	88
MC5-78	MC5	88
MC5.5-34	MC5.5	88
MC5.5-58	MC5.5	88
MC5.5-78	MC5.5	88
MC6-1	MC6	88
MC6-34	MC6	88
MC6-58	MC6	88
MC6-78	MC6	88
MC9-114 MC0-110	MC9	88
MC9-110 MC9-34	MC9	00 88
MC9-54 MC9-58	MC9-58	88
MC9-78	MC9	88
MPB120-1-24	MPB120-1	104
MPB120-1-90	MPB120-1	104
MPB120-2-24	MPB120-2	104
MPB120-2-90	MPB120-2	104
MPB15-1-24	MPB15-1	104
MPB15-1-90	MPB15-1	104
MPB15-2-24	MPB15-2	104
MPB15-2-90	MPB15-2	104
MPB15-3-24	MPB15-3	104
MPB15-3-90	MPB15-3	104
MPB2-1-24	MPB2-1	104
MDP240 1 24		104
MDR240-1-24		104
MPB240-1-50 MPB240-2-24	MPB240-7 MPB240-2	104
MPB240-2-90	MPB240-2	104
MPB240-3-24	MPB240-3	104
MPB240-3-90	MPB240-3	104
MPB70-1-24	MPB70-1	104
MPB70-1-90	MPB70-1	104
MPB70-2-24	MPB70-2	104
MPB70-2-90	MPB70-2	104
MPC 70-1-90	MPC70	111
MPC120-1-24	MPC120	111
MPC120-1-90	MPC120	111
MPC15-1-24	MPC15	111
WPC15-1-90 MDC2 1-24	MPC 2	111
WF62-1-24 MPC2 1 00	MPC 2	111
MPC70-1-24	MPC70	111

Part Number	Model Number	Page
200/2		120
200/2/LC		120
200/4		120
200/4/LC		120
200/6/1.0		120
250/0/1		120
250/2		128
250/4		128
250/6		128
280/3		120
280/6		120
280/6/LC		120
280/9		120
280/9/LC		120
300/1		128
300/2		120
300/6		128
300/8		128
350/1		128
350/10		128
350/2		128
350/4		128
350/8		128
400/1		128
400/10		128
400/12		128
400/2		120
400/6		128
400/8		128
450/1		128
450/10 450/12		128
450/12		128
450/2		128
450/4		128
450/6 450/8		128
450/8 ΔTTR115	5193-10	67
ATTB115	5193-11	67
ATTB115	5193-12	67
ATTB115	5193-13	67
ALIBII5	5193-6 5102 7	67 67
ATTB115	5193-8	67
ATTB115	5193-9	67
ATTB25	5191-10	67
ATTB25	5191-11	67
ATTR25	5191-12 5191-13	67
ATTB25	5191-6	67
ATTB25	5191-7	67
ATTB25	5191-8	67
AI IB25	5191-9	6/ 67
ATTB55	5192-10	67
ATTB55	5192-12	67
ATTB55	5192-13	67
ATTB55	5192-6	67
ATTR55	5192-7 5102-8	67
ATTB55	5192-9	67
ATTC115	5163-271-021	67
ATTC115	5163-271-022	67
ALIU115	5163-2/1-023	67
ATTC115	5163-271-024	67
ATTC115	5163-271-026	67
ATTC115	5163-271-027	67
	5163-271-028	67 67
AI 1620	5101-271-021	0/
Index

By Model Number

Model Number	Part Number	Page
ATTC25	5161-271-022	67
ATTC25	5161-271-023	67
ATTC25	5161-271-024	67
ATTC25	5161-271-025	67
ATTC25	5161-271-026	67
ATTC25	5161-271-027	67
ATTC25	5161-271-028	67
ATTC55	5162-271-021	67
ATTC55	5162-271-022	67
ATTC55	5162-271-023	67
ATTC55	5162-271-024	67
ATTC55	5162-271-025	67
ATTC55	5162-271-026	67
ATTC55	5162-271-027	67
ATTC55	5162-271-028	67

Model Number	Part Number	Page
MB1	MB1-316	88
MB1.5	MB1.5-14	88
MB2	MB2-14	88
MB3	MB3-38	88
MB4	MB4-58	88
MB5	MB5-1	88
MB5.5	MB5.5-1	88
MB6	MB6-1	88
MB9	MB9-1	88
MC1.5	MC1.5-14	88
MC2	MC2-14	88
MC3	MC3-38	88
MC4	MC4-12	88
MC4	MC4-38	88
MC4	MC4-58	88
MC5	MC5-1	88
MC5	MC5-12	88
MC5	MC5-34	88
MC5	MC5-38	88
MC5	MC5-58	88
MC5	MC5-78	88
MC5.5	MC5-1	88
MC5.5	MC5.5-34	88
MC5.5	MC5.5-58	88
MC5.5	MC5.5-78	88
MCb	MC6-1	88
MCG		88
MCC		00
		00
MCO	MC0 119	00
MCG	MC0-34	88
MC9	MC9-78	88
MC9-58	MC9-58	88
MCS 204	6910-448-017	47
MCS-166	6910-448-013	53
MCS-203	6910-448-014	49

Index

By Model Number

Model Number	Part Number	Page
MPB120-1	MPB120-1-24	104
MPB120-1	MPB120-1-90	104
MPB120-2 MPB120-2	MPB120-2-24 MPB120-2-00	104
MPB15-1	MPB15-1-24	104
MPB15-1	MPB15-1-90	104
MPB15-2	MPB15-2-24	104
MPB15-2	MPB15-2-90	104
MPB15-3	MPB15-3-90	104
MPB2-1	MPB2-1-24	104
MPB2-1	MPB2-1-90	104
MPB240-1	MPB240-1-24	104
MPB240-1 MPB240-2	MPB240-1-90 MPB240-2-24	104 104
MPB240-2	MPB240-2-90	104
MPB240-3	MPB240-3-24	104
MPB240-3	MPB240-3-90	104
MPB70-1 MPB70-1	MPB70-1-24 MPB70-1-90	104
MPB70-2	MPB70-2-24	104
MPB70-2	MPB70-2-90	104
MPC 2	MPC2-1-24	111
MPC 2 MPC120	MPC2-1-90	111
MPC120 MPC120	MPC120-1-24 MPC120-1-90	111
MPC15	MPC15-1-24	111
MPC15	MPC15-1-90	111
MPC70	MPC 70-1-90	111
	MPC70-1-24	111 75
MTB II		75
NG24	7430-448-003	131
P/M HOUSING	6910-448-015	54
P/M HOUSING	6910-448-018	54
PHC0.6R	5401-270-321	104
PHC1.2R	5401-270-331	104
PHC10R	5401-270-361	104
PHC2.5R	5401-270-341	104
PHC2UR PHC5B	5401-270-371 5401-270-351	104 104
PMC 10	5401-270-111	109
PMC 20	5401-270-121	109
PMC 40	5401-270-131	110
	5401-169-211	107
POB 1.2	5401-169-231	107
POB 10	5401-169-261	107
POB 2.5	5401-169-241	107
POB 20	5401-169-271	107
POB 5	5401-169-251	107
POB 80	5401-169-291	107
P0C0.3	5401-270-211	114
P0C0.6	5401-270-221	114
P0C10	5401-270-231	114
P0C2.5	5401-270-241	114
P0C20	5401-270-271	114
POC40	5401-270-281	114
P0C80	5401-270-291	114
PRB1.2H	5401-169-331	108
PRB10H	5401-169-361	108
PKB2.5H	5401-169-341	108
PRD2UH PRB5H	5401-169-371 5401-169-351	108 108
PTB10 BL3	5401-169-161	105
PTB2.5 BL3	5401-169-141	105
PTB20 BL3	5401-169-171	105
PTR2 RF3	5401-169-151	105

Model Number	Part Number	Page
STATE SWITCH	6910-101-007	53
TB-1000	5312-1	60
TB-1000	5312-24	60
TB-1225	5313-1	60
TB-1225	5313-24	60
TB-1525	5314-1	60
TB-1525	5314-24	60
IB-170	5375-1	60
IB-170 TP 170	5375-2 5275-2	60 60
TP 170	5375-5 5275 A	60
TB-170	5375-5	60
TB-170	5375-6	60
TB-260	5365-10	60
TB-260	5365-11	60
TB-260	5365-12	60
TB-260	5365-2	60
TB-260	5365-3	60
TB-260	5365-5	60
TB-260	5365-6	60
IB-260	5365-8	60
1B-200 TP 425	5365-9 5267 10	60 60
TB-425	5367-10 5367-11	60
TB-425	5367-12	60
TB-425	5367-5	60
TB-425	5367-6	60
TB-425	5367-7	60
TB-425	5367-8	60
TB-425	5367-9	60
TB-500	5310-2	60
TB-500	5310-24	60
IB-825	5311-2	60
IB-825	5311-24	60
TCS 200 1	0910-448-000 6010-448-006	40
TCS 200-1 TCS 200-1H	6010-446-060 6010-448-087	40
TCS-167	6910-448-025	53
TCS-168	6910-448-032	53
TCS-210	6910-448-026	50
TCS-220	6910-448-027	48
TCS-310	6910-448-042	52
TCS-605-1	7330-448-002	37
TCS-605-5	7330-448-003	37
TCS605-1	7330-448-002	37
105605-2	7330-448-004	37
	7330-448-003	3/
UT30UP-DCA4-1010-C31	7600-446-001 7600-448-002	131
W/S HOUSING	6910-448-016	54
W/S HOUSING	6910-448-019	54
W/S HOUSING	6910-448-029	54
BXCTRL	6910-448-306	40
BX2DRV	6910-448-305	41
BXCTRL-BX2DRV	6910-448-307	41

Warner Electric Clutch/Brake Products

Warner Electric engineers, manufactures and markets, a wide array of electromechanical components and systems for controlling motion. Designed to help increase productivity, our products are incorporated into new equipment designs and are also used to upgrade performance on machines already in service. With an international organization of stocking distributors and sales centers, Warner Electric offers the most extensive network of its kind for locally available products and professional, on-the-spot customer service.

Basic Design Clutches and Brakes Catalog P-1264-WE

Permanent Magnet and Magnetic Particle Clutches and Brakes Catalog P-1316-WE

Wrap Spring Clutches and Clutch/Brakes Catalog P-1310-WE

Lawn & Garden Clutch/Brakes Catalog P-1698-WE

Magnetic Capping Headsets and Chucks Brochure P-1638-WE

Forklift Truck Brakes Brochure P-7637-C

Electrically Released Brakes for Elevators Brochure P-1733-C

Custom Electromagnetic Coils Brochure P-1298-WE

Solutions for the Aerospace and Defense Markets Brochure P-1717-C

Warner Electric Facilities

North America

USA 31 Industrial Park Road New Hartford, CT 06057 - USA 860-379-1252 Electromagnetic Clutches and Brakes

449 Gardner Street South Beloit, IL 61080 - USA 815-389-3771

4578 East Park 30 Drive Columbia City, IN 46725 - USA 260-244-6183 Precision Electric Coils and Electromagnetic Clutches and Brakes

Customer Service 1-800-825-6544

Application Support 1-800-825-9050

Europe

France 7, rue Champfleur, B.P. 20095 St Barthelemy d'Anjou - France +33 (0)2 41 21 24 24 Electromagnetic Clutches and Brakes

Customer Service +33 (0)2 41 21 24 76

Application Support +33 (0) 2 41 21 24 24

Asia Pacific

Australia +61 2 9894 0133 China

+86 21 5169-9255

Hong Kong +852 2615 9313

Singapore +65 6487 4464

Taiwan +886 2 2577 8156

Thailand +66 2322 5527

The Brands of Altra Motion

Couplings

Ameridrives www.ameridrives.com

Bibby Turboflex www.bibbyturboflex.com

Guardian Couplings www.guardiancouplings.com

Huco www.huco.com

Lamiflex Couplings www.lamiflexcouplings.com

Stromag www.stromag.com

TB Wood's www.tbwoods.com

Linear Systems

Thomson www.thomsonlinear.com Geared Cam Limit Switches

Stromag www.stromag.com

Engineered Bearing Assemblies

Kilian www.kilianbearings.com

Electric Clutches & Brakes

Matrix www.matrix-international.com

Stromag www.stromag.com Warner Electric

www.warnerelectric.com

www.thomsonlinear.com

Belted Drives TB Wood's www.tbwoods.com

Heavy Duty Clutches & Brakes

Twiflex www.twiflex.com

Stromag www.stromag.com

Svendborg Brakes www.svendborg-brakes.com Wichita Clutch www.wichitaclutch.com

Gearing & Specialty Components

Bauer Gear Motor www.bauergears.com

Boston Gear www.bostongear.com

Delevan www.delevan.com

Delroyd Worm Gear www.delroyd.com

Nuttall Gear www.nuttallgear.com

Engine Braking Systems

Jacobs Vehicle Systems www.jacobsvehiclesystems.com

Precision Motors & Automation

Kollmorgen www.kollmorgen.com

Miniature Motors

Portescap www.portescap.com

Overrunning Clutches

Formsprag Clutch www.formsprag.com

Marland Clutch www.marland.com

Stieber www.stieberclutch.com

Neither the accuracy nor completeness of the information contained in this publication is guaranteed by the company and may be subject to change in its sole discretion. The operating and performance characteristics of these products may vary depending on the application, installation, operating conditions and environmental factors. The company's terms and conditions of sale can be viewed at http://www.altramotion.com/terms-and-conditions/sales-terms-and-conditions. These terms and conditions apply to any person who may buy, acquire or use a product referred to herein, including any person who buys from a licensed distributor of these branded products.

©2019 by Warner Electric LLC. All rights reserved. All trademarks in this publication are the sole and exclusive property of Warner Electric LLC or one of its affiliated companies.

